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Abstract

Consider a nonparametric regression setup where the regression function
M(x) = E(Y |X = x) is an unknown smooth function. In this setup sev-
eral methods are known for the classic problem of locating the maxima of
the regression function. However, almost all of these methods work only
if the regression function has a unique local maximum. How to design an
experiment so that we can solve the above problem when the regression func-
tion has more than one global maxima and possibly several local maxima is a
question that has not been addressed adequately in the available literature.
Here we propose two adaptive sequential methods for the above problem,
which are applicable to regression functions of several variables. We derive
results on the asymptotic behavior of the proposed procedures and report
some simulation results that demonstrate their finite sample behavior.
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Chapter 1

Introduction

1.1 Problem description

Let us consider the model

Y = M(X) + σ(x)ε, (1.1)

where E(ε) = 0, V ar(ε) = 1, M(x) is a smooth function from X to R, and
σ(x) is a continuous function on X bounded away from zero. Here, we con-
sider a nonparametric setup, where no parametric form of M(x) has been
assumed.

Let us assume that X is a connected and compact subset of Rd for some
d ≥ 1, and M(x) has only finitely many global maxima. Define

m = sup
x∈X

M(x) (1.2)

and Xopt = {x ∈ X : M(x) = m}. (1.3)

Now, to estimate M(x) over X , in some parametric cases, we can find opti-
mal fixed designs ( D-optimal, A-optimal etc.) which minimizes appropriate
criteria functions (see e.g., Fedorov [9]). But if our objective is to find a
fixed design, that is optimal with respect to the minimum integrated mean
square error criteria in nonparametric setup, the optimal design turns out to
be uniform design. In the case of kernel regression, Müller [18] proved that
the optimal design w.r.t. the minimum IMSE criteria is the design having
density σ(x)/

∫
t∈X σ(t) dt. In particular, uniform design is the best design in

the homoscedastic case w.r.t. minimum IMSE criterion. This result is not
unexpected, since the regression function belongs to a large class of functions
and to estimate it “nicely” at all places no design can beat the uniform de-
sign. Moreover, if our objective is to estimate M(x) efficiently at one point,
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clearly the design degenerate at that point would be the best design in that
case.

However, sometimes it is more important to identify and locate some fea-
tures of the regression function such as local or global maxima or minima of
the function efficiently than estimating the whole regression function. For
example, in a production precess, there are several factors influencing the
production, and one important problem there is to find levels of explana-
tory variables, like temperature, pressure, concentration of chemicals etc.,
under which the output is maximum. Adaptive design, where the design
for each trial depends on the data from previous trials, is naturally more
suitable in these cases. In addition to precisely locating the global maxima
of the unknown regression function, we want to keep the output to a high
level throughout the experiment(i.e., less number of “unproductive” trials).
Moreover if the regression function has more than one maximum, full knowl-
edge of the set of maxima can decrease the production cost of the process
significantly while achieving the best level of the production. So, we con-
sider criteria which reflect these ideas. Here, we consider the case of finding
maxima. We also assume that the regression function M(.) is nonnegative
and m = supx∈X M(x) > 0. Suppose that our total resource (total sam-
ple size that can be used in the experiment) is n and the observations are
{(xi, yi) : i = 1, 2, . . . , n}. Our criterion functions are

C1 =
1

m
(m−min(ȳ, m)) = 1−min

(∑n
i=1 yi

nm
, 1

)
, (1.4)

C2 =
1

nm

n∑
i=1

(
m−min(yi, m)

)
= 1− 1

n

n∑
i=1

min
( yi

m
, 1
)

(1.5)

and C3 =
1

nm

n∑
i=1

(
m−M(xi)

)
= 1− 1

n

n∑
i=1

M(xi)

m
. (1.6)

1.2 Locating the Global Maxima of Regres-

sion Function : Literature survey

In the literature, several fixed design methods are available for estimating
the maxima of a regression function in a nonparametric setup, such as best-
r-points-average method based on order statistics (Chen [2]), kernel method
with adaptive bandwidth selector (Müller [17]) etc. But one unavoidable
shortcoming of fixed design methods is that many unproductive trials may
be performed in the sense that a large fraction of the design points may come
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from regions where the value of the regression function is quite small.

In the case of adaptive designs, there are mainly two well known methods
for locating the maximum of a regression function. They are the Kiefer-
Wolfowitz recursive stochastic approximation procedure (see e.g., Kiefer &
Wolfowitz [12]) in a nonparametric setup and the response surface method
(RSM, see e.g., Draper & Smith [7]) in a parametric setup. Both these meth-
ods can be viewed as extensions of the commonly used gradient methods in
numerical analysis to the case when the objective function is observed with
random error. And for maximizing a known function, it is well-known that
the gradient method may fail to locate the global maximum if the objective
function has some saddle points. Hotelling [11] has proposed a two-stage
procedure where one conducts a pilot survey to get an initial estimate of the
maximum and uses design based on quadratic modeling near the estimated
maximum to estimate the maximum more accurately.

Response surface method is currently a popular method to find conditions
that maximize yields. But the use of RSM to find conditions that maximize
the response has some limitations. First, the data are assumed to follow
normal distribution, although GLMs are recently being discussed (see e.g.
McCullagh & Nelder [16]). Second, the surface and the peak are determined
by a parametric equation, usually of quadratic type. This implies that all
interactions between the predictors are assumed to be of product type. More-
over parametric models have their own limitations of not being flexible in the
sense that one parametric equation is assumed to relate the response to the
predictors over the entire range of the predictors considered.

The Kiefer-Wolfowitz procedure has been briefly discussed in section 1.3.
Sacks [19] proved the asymptotic normality of the estimator obtained by this
procedure under general setup though here also the conditions on M(x) are
restrictive in nature and not always satisfied in reality. He has also shown
that by choosing appropriate parameters in the procedure one can make the
convergence rate very close to Op(n

−1/2) without ever achieving it. Chen [3]
has proved that the minimax rate of convergence for estimating the maximum
of a regression function over a class which contains enough functions with
p-th derivative bounded by a constant K, is Op(n

−(p−1)/2p) for fixed designs
and stochastic approximation procedures(see Stone [20], [21], Chen [3]).
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1.3 Kiefer-Wolfowitz Procedure

Suppose that X = R and the function M(x) has a unique maximum at θ
and is strictly increasing for x < θ and strictly decreasing for x > θ.

1.3.1 Algorithm :

Let an, cn be two infinite sequences of positive numbers such that,∑
an = ∞, cn → 0,

∑
ancn < ∞ and

∑
a2

nc
−2
n < ∞ (1.7)

(for example an = 1/n, cn = 1/n1/3).

Let X1 be any point (fixed or random) from X . Define {Xn : n ≥ 2} by the
recursion

Xn+1 = Xn − anc
−1
n [Y1,n − Y2,n], (1.8)

where Y1,n and Y2,n are outcomes of independent noisy measurement of
M(Xn−cn) and M(Xn+cn) respectively. (i.e. Y1,n = M(Xn−cn)+ε1, Y2,n =
M(Xn + cn) + ε2 and ε1, ε2 are independent.)

Then under certain regularity conditions on M(x), Xn converges to θ in
probability (see e.g., Kiefer & Wolfowitz [12]).

1.3.2 Asymptotic normality of Xn

Suppose that an = An−1,∀n ≥ 1 for some A > 0 and {cn} be a sequence of
positive real numbers such that

cn → 0, n(cnc
−1
n+1 − 1) → 0 as n →∞ and

∑
(ncn)−2 < ∞ (1.9)

(for example, cn =
∏n

i=1(1− 1/ log(i + 1))).

Then under certain conditions on A and M(x),
√

ncn(Xn − θ) is asymptoti-
cally normal with mean 0 and variance Kσ2, where K is a constant depending
on A and M(x)(see e.g., Sacks [19]).

1.4 Limitations of Kiefer-Wolfowitz method:

1. This procedure is applicable only when the regression function M(x)
has a unique maximum. If M(x) has multiple maxima, this procedure
may fail to converge to any one of them.
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2. The conditions on M(x) are very restrictive. Conditions such as strict
monotonicity of M(x) in both [θ,∞) and (−∞, θ], bounded away-ness
of right and left derivatives from zero and infinity in absolute value etc.
restrict the applicability of the method to general regression functions
(even for polynomial functions).

3. In this procedure, one always does the experiment at Xn ± cn, where
Xn is the estimate of the maximum at the n-th stage. Hence, even if we
get a good estimate of the true maximum, throughout the experiment
many “unproductive” trials are performed.

4. This procedure cannot be easily generalized to higher dimensional de-
sign space X .
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Chapter 2

Proposed Methodology

We have proposed two methods based on kernel regression estimation to effi-
ciently estimate the set Xopt as well as the maximum value m. Both methods
use a fraction of the total sample to get an initial estimate of the regres-
sion function and then sequentially update the regression estimate using the
subsequent data and thereby estimate Xopt.

2.1 First Method

This method is motivated by the “simulated annealing algorithm” (see Kirk-
patrick et.al. [13], [14]), which is used to find the global optima of a function
when the function is known but the set X is a very large finite set. Here we
discretized X making it a fine grid. This is not really a restriction since if
the distance between two points in X is very small, we cannot distinguish
them in terms of the values of the function M in practice, and the grid can
be made as fine as we want. Let X ∗ be the set consisting of the grid points.
Suppose |X ∗| = N . Also suppose that the total sample size, that can be used
in the experiment is n.

Given total sample size n, we shall generate the design points in (tn+1) stages
and after each stage we shall update the estimate of the regression function,
hence the estimate of Xopt. We shall use a sample of size n0 = n0(n) to get
an initial estimate of the function M(x). Assume that

n0(n) →∞ and
n0(n)

n
→ 0 as n →∞. (2.1)

The above conditions on n0 is needed so that for large n we have enough
data to estimate M(x) efficiently even at the initial stage, but the fraction
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of the total sample used at the initial stage is small. Let ni(n) be the sample
size that will be used in the i-th stage, i = 1, 2, . . . , tn. Define ni(n) = 0
for i > tn. So we have a sequence of nonnegative integers depending on n,
(n0(n), n1(n), . . . ,) such that ni(n) > 0 for i = 0, 1, 2, . . . , tn, and ni(n) = 0
for i > tn.

In what follows, the following assumptions and notations will be used,

• Yi is the outcome of a noisy measurement at Xi for i = 1, 2, . . . , n, and

Yi = M(Xi) + σ(Xi)εi, i = 1, 2, . . . , n

where the εi’s are independent with E(εi) = 0 and V ar(εi) = 1.

• K(.) is a positive symmetric kernel function on Rd such that∫
Rd

K(x)dx = 1,

∫
Rd

‖x‖K(x)dx < ∞

• Hn(X1, Y1, . . . , Xn, Yn) is a consistent bandwidth based on the sample
{(X1, Y1), . . . , (Xn, Yn)} (see Wand & Jones [22], Fan & Gijbels [8]).
Denote Hn1+···+nk

(X1, Y1, . . . , Xn1+···+nk
, Yn1+···+nk

) by hk.

• Given a sample (X1, Y1), (X2, Y2), . . . , (Xn0+n1+···+nk−1
, Yn0+n1+···+nk−1

)

of size n0 + n1 + · · · + nk−1, let M̂k be a kernel regression estimate of
M(x) based on the available samples, using bandwidth hk and kernel
K(.).

• T n
k = ∆∗(M̂p)/(cn log (k + 1− n0)), k > n0(n) is a random sequence of

real numbers, where cn ∈ (0, 1) ∀ n ≥ 1, p is such that
∑p−1

i=0 ni < k ≤∑p
i=0 ni and

∆∗(g) = sup
x∈X ∗

g(x)− inf
x∈X ∗

g(x).

2.1.1 Algorithm

1. Let X1, X2, . . . , Xn1 be n1 random points chosen uniformly from X ∗.

2. At the k-th step, define recursively for i = 1, 2, . . . , nk Zi,k as a random
variable on X ∗, such that

Zi,k|X1, X2, . . . , XS(k−1)+i−1 ∼ Uniform(X ∗).
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and

XS(k−1)+i =

Zi,k, w. p. exp [− (M̂k(XS(k−1)+i−1)−M̂k(Zi,k))+

TS(k−1)+i
]

XS(k−1)+i, w. p. 1− exp [− (M̂k(XS(k−1)+i−1)−M̂k(Zi,k))+

TS(k−1)+i
]

where S(k) =
∑k

j=0 nj, j ≥ 1.

3. Continue this procedure for k = 1, 2, . . . , tn.

Fact

If, at any point x, we can evaluate M(x) without any error (i.e., no ε is there
in that case), the above procedure with n0 = 1 and M(x) in place of M̂k(x)
gives an inhomogeneous Markov chain {Xn} such that

lim
n→∞

P (Xn ∈ X ∗
opt) = 1

where X ∗
opt = {x ∈ X ∗ : M(x) = supz∈X ∗ M(z)}. Moreover in this case the

limiting stationary distribution for {Xn} exists, and it is uniform over the
set Xopt(see e.g., Winkler [23]).

2.2 Second Method

This method is based on one simple observation that X k
opt ↓ Xopt, where

X k
opt = {x : M(x) ≥ m(1− ck)} and {ck} is a decreasing sequence of positive

real numbers converging to 0. Here, the basic strategy would be to estimate
the set X k

opt at the k-th stage.

As before let (n0(n), n1(n), . . . ,) be a sequence of positive integers depending
on n such that ni(n) > 0 for i = 0, 1, 2, . . . , tn, ni(n) = 0 for i > tn and∑∞

i=1 ni(n) = n. At the k-th step, we shall use a sample of size nk = nk(n).
Also, assume that

n0(n) →∞ and
n0(n)

n
→ 0 as n →∞. (2.2)

For a set S ⊂ X , define

B(S, ε) = {x ∈ X : d(x, S) ≤ ε}.

At the k-th stage, the design points used in the experiment are denoted by
xk,1, xk,2, . . . , xk,nk

, and these points are generated from the random design
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Dk, where D0 is the random uniform design over X and we shall update Dk

recursively. Also, let yk,i be the outcome of a noisy measurement at xk,i for
i = 1, 2, . . . , n, and

yk,i = M(xk,i) + σ(xk,i)εk,i, for i = 1, 2, . . . , nk, k = 1, 2, . . . , k(n),

where εk,i’s are independent with

E(εk,i) = 0, V ar(εk,i) = 1.

Let K(.) be a positive symmetric kernel function on Rd such that∫
Rd

K(x)dx = 1,

∫
Rd

‖x‖K(x)dx < ∞.

Let Hn be a consistent bandwidth selector based on a sample of size n. De-
note Hn0+n1+...+nk

(x1,1, y1,1, . . . , xk,nk
, yk,nk

) by hk.

Given a sample (X1, Y1), (X2, Y2), . . . , (Xn0+n1+···+nk−1
, Yn0+n1+···+nk−1

) of size

n0 + n1 + · · · + nk−1, let M̂k be a kernel regression estimate of M(x) based
on the available samples, using bandwidth hk and kernel K(.).

Let {αn
k}, {cn

k} and {rn
k} be sequences of real numbers in (0, 1) such that for

fixed n, they are decreasing in k and for fixed k, they converge to zero.

2.2.1 Algorithm

1. At the k-th step, generate nk(n) points xk,1, xk,2, . . . , xk,nk
from the

random design Dn
k , where

Dn
0 = Uniform design distribution over X , (2.3)

Sn
k = {x ∈ X : M̂k(x) ≥ (1− cn

k) sup
y∈X

M̂k(y)}, (2.4)

Un
k = B(Sn

k , rn
k ), (2.5)

Cn
k = Uniform design distribution over Un

k , and (2.6)

Dn
k = αn

kDn
k−1 + (1− αn

k)Cn
k (2.7)

=
k∏

i=1

αn
i D0 +

k∑
i=1

(1− αn
i )

k∏
j=i+1

αn
j Cn

i . (2.8)

2. Repeat the above step for k = 1, 2, . . . , tn.
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Chapter 3

Simulation Studies on the
performance of the proposed
methods

3.1 Simulation Plan

In the numerical experiment, we have considered three functions of three
different types

1. a function having a unique global maximum which is also the only local
maximum,

2. a function having a unique global maximum and some local maxima,
and

3. a function having several global as well as local maxima.

All the functions are defined on [0, 1]. For each function, we have considered

σ with values such that the noise to signal ratio ( i.e., σ/
∫ 1

0
M(x)dx )is 1

and 2. For each combination, two sample of sizes 50 and 100 are considered.
For the Kiefer-Wolwowitz procedure, we have considered the sequences

an = n−1, cn = n−
1
3 . (3.1)

In both of our proposed methods, we have considered

n1(n) = 2dlog(n)e, ni(n) = dlog(n−
i−1∑
k=1

nk(n))e, i = 2, 3, . . .

cn = (n + 1)−4, rn = [log(n + 1)]−2, αn = (n + 1)−2. (3.2)
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For both of our proposed methods, Nadaraya-Watson kernel regression esti-
mator with normal kernel and cross-validation bandwidth was used.

3.2 Function with a unique maximum

Here we consider the regression function (figure 3.1),

M(x) = 6x(1− x). (3.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Figure 3.1: Plot of M(x) given by (3.3).

M(x) satisfies all the assumptions in Kiefer-Wolwowitz procedure, it has
unique maximum at x = 0.5 and the range of the function is 1. Also∫ 1

0
M(x) = 1.

3.2.1 Results for Kiefer-Wolwowitz procedure

The histograms of the xi’s for sample sizes 50 and 100 are shown in figure 3.2
and figure 3.3 respectively. Note that the xi’s are sampled around the true
maximum but not at the maximum. So C1 and C2 criteria values are high,
though the method gives a ‘good’ estimate of the true maximum.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Figure 3.2: Histograms of the xn’s for Kiefer-Wolwowitz procedure with sam-
ple size 50 and, noise to signal ratio 1 and 2 respectively.
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Figure 3.3: Histograms of the xn’s for Kiefer-Wolwowitz procedure with sam-
ple size 100 and, noise to signal ratio 1 and 2 respectively.

Sample size 50 100
Noise to signal ratio 1 2 1 2

Estimate of maximum 0.4994 0.5437 0.4871 0.5445
C1 63.2042 59.1585 48.3130 54.0282
C2 74.8308 87.1079 61.8069 81.1042

Table 3.1: Results of K-W procedure for M(x) given by (3.3)

3.2.2 Results for the first proposed method

The histograms of the sampled xi’s for sample sizes 50 and 100 are shown in
figure 3.4 and figure 3.5 respectively. Note here the xi’s are clustered at the
true maximum and the C1, C2 criteria values are smaller than that for the
Kiefer-Wolwowitz procedure.

Sample size 50 100
Noise to signal ratio 1 2 1 2

C1 26.8417 13.6503 10.7209 15.1867
C2 45.6964 60.7539 30.5762 57.6062

Table 3.2: Results of the first proposed method for M(x) given by (3.3).

3.2.3 Results for the second proposed method

1) Sample size 50 and noise to signal ratio = 1
Here the initial sample size is n1 = 8. The estimate of the regression

function and the histograms of the xi’s sampled at the initial stage, the
middle stage when half of the total sample has been used and the final stage
are shown in figure 3.6. The final density Dn and the scatter plot of the
observations are shown in figure 3.7.
2) Sample size 50 and noise to signal ratio = 2
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Figure 3.4: Histograms of the xn’s for the first proposed method with sample
size 50 and, noise to signal ratio 1 and 2 respectively.
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Figure 3.5: Histograms of the xn’s for the first proposed method with sample
size 100 and, noise to signal ratio 1 and 2 respectively.

Here the initial sample size is n1 = 8. The estimate of the regression
function and the histograms of the xi’s sampled at the initial stage, the
middle stage when half of the total sample has been used and the final stage
are shown in figure 3.8. The final density Dn and the scatter plot of the
observations are shown in figure 3.9.
3) Sample size 100 and noise to signal ratio = 1

Here the initial sample size is n1 = 10. The estimate of the regression
function and the histograms of the xi’s sampled at the initial stage, the
middle stage when half of the total sample has been used and the final stage
are shown in figure 3.10. The final density Dn and the scatter plot of the
observations are shown in figure 3.11.
4) Sample size 100 and noise to signal ratio = 2

Here the initial sample size is n1 = 10. The estimate of the regression
function and the histograms of the xi’s sampled at the initial stage, the
middle stage when half of the total sample has been used and the final stage
are shown in figure 3.12. The final density Dn and the scatter plot of the
observations are shown in figure 3.13.
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Figure 3.6: Estimate of M(x) and the histograms of the xi’s for the second
proposed method with sample size 50 and noise to signal ratio 1, at the initial
stage, the middle stage when half of the total sample has been used and the
final stage respectively.
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Figure 3.7: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 50 and noise to signal ratio 1.

Sample size 50 100
Noise to signal ratio 1 2 1 2

Estimate of Xopt [0.41,0.67] [0.36,0.71] [0.37,0.64] [0.42,0.61]
C1 9.0437 20.4619 13.6940 8.0167
C2 36.1963 53.9820 37.5392 57.9038

Table 3.3: Results of the second proposed method for M(x) as given in (3.3)
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Figure 3.8: Estimate of M(x) and the histograms of the xi’s for the second
proposed method with sample size 50 and noise to signal ratio 2, at the initial
stage, the middle stage when half of the total sample has been used and the
final stage respectively.
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Figure 3.9: Density of Dn and scatter plot of the observations in the second
proposed method with sample size 50 and noise to signal ratio 2.
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Figure 3.10: Estimate of M(x) and histograms of xi’s for the second proposed
method with sample size 100 and noise to signal ratio 1, at the initial stage,
the middle stage when half of the total sample has been used and the final
stage respectively.
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Figure 3.11: Density of Dn and scatter plot of the observations in the second
proposed method with sample size 50 and noise to signal ratio 1.
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Figure 3.12: Estimate of M(x) and histograms of xi’s for the second proposed
method with sample size 100 and noise to signal ratio 2, at the initial stage,
the middle stage when half of the total sample has been used and the final
stage respectively.
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Figure 3.13: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 100 and noise to signal ratio 2.
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3.3 Function with a unique global maximum

and two local maxima

Here we consider the regression function(figure 3.14),

M(x) = 1.42(exp[−50(x− .1)2] + 2 exp[−200(x− .3)2] (3.4)

+ exp[−50(x− .8)2]).
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Figure 3.14: Plot of M(x) given by (3.4).

M(x) has unique global maximum at x = 0.3 and two local maxima at

x = 0.1 and x = 0.8. The Range of the function is 3.03 and
∫ 1

0
M(x) = 0.999.

3.3.1 Results for Kiefer-Wolwowitz procedure

The histograms of the xi’s for sample sizes 50 and 100 are shown in figure 3.15
and figure 3.16 respectively.
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Figure 3.15: Histograms of the xn’s for Kiefer-Wolwowitz procedure with
sample size 50 and, noise to signal ratio 1 and 2 respectively.
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Figure 3.16: Histograms of the xn’s for Kiefer-Wolwowitz procedure with
sample size 100 and, noise to signal ratio 1 and 2 respectively.

Sample size 50 100
Noise to signal ratio 1 2 1 2

Estimate of maximum 0.50877 0.81947 0.12629 0.88406
C1 92.536 75.981 77.315 82.725
C2 92.536 79.838 77.372 84.942

Table 3.4: Results of K-W procedure for M(x) given by (3.4).

3.3.2 Results for the first proposed method

The histograms of the sampled xi’s for sample sizes 50 and 100 are shown in
figure 3.17 and figure 3.18 respectively. Note here the xi’s are clustered at
the true maximum and the C1, C2 criteria values are smaller than the that
corresponding to Kiefer-Wolwowitz procedure.

Sample size 50 100
Noise to signal ratio 1 2 1 2

C1 31.548 8.3149 27.819 33.285
C2 39.141 30.305 35.441 47.567

Table 3.5: Results of the first proposed method for M(x) given by (3.4).

3.3.3 Results for the second proposed method

1) Sample size 50 and noise to signal ratio =1
Here the initial sample size is n1 = 8. The estimate of the regression

function and the histograms of the xi’s sample at the initial stage, the middle
stage when half of the total sample has been used and the final stage are
shown in figure 3.19. The final density Dn and scatter plot of the observations
are shown in figure 3.20.
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Figure 3.17: Histograms of the xn’s for the first proposed method with sample
size 50 and, noise to signal ratio 1 and 2 respectively.
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Figure 3.18: Histograms of the xn’s for the first proposed method with sample
size 100 and, noise to signal ratio 1 and 2 respectively.

2) Sample size 50 and noise to signal ratio= 2
Here the initial sample size is n1 = 8. The estimate of the regression

function and the histograms of the xi’s sample at the initial stage, the middle
stage when half of the total sample has been used and the final stage are
shown in figure 3.21. The final density Dn and scatter plot of the observations
are shown in figure 3.22.
3) Sample size 100 and noise to signal ratio= 1

Here the initial sample size is n1 = 10. The estimate of the regression
function and the histograms of the xi’s sample at the initial stage, the middle
stage when half of the total sample has been used and the final stage are
shown in figure 3.23. The final density Dn and scatter plot of the observations
are shown in figure 3.24.
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Figure 3.19: Estimate of M(x) and the histograms of the xi’s for the second
proposed method with sample size 50 and noise to signal ratio 1, at the initial
stage, the middle stage when half of the total sample has been used and the
final stage respectively.
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Figure 3.20: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 50 and noise to signal ratio 1.

4) Sample size 100 and noise to signal ratio= 2
Here the initial sample size is n1 = 10. The estimate of the regression

function and the histograms of the xi’s sample at the initial stage, the middle
stage when half of the total sample has been used and the final stage are
shown in figure 3.25. The final density Dn and scatter plot of the observations
are shown in figure 3.26.
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Figure 3.21: Estimate of M(x) and the histograms of the xi’s for the second
proposed method with sample size 50 and noise to signal ratio 2, at the initial
stage, the middle stage when half of the total sample has been used and the
final stage respectively.
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Figure 3.22: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 50 and noise to signal ratio 2.

Sample size 50 100
Noise to signal ratio 1 2 1 2

Estimate of Xopt [0.267,0.332] [0.225,0.355] [0.285,0.325] [0.246,0.332]
C1 26.118 32.584 29.972 27.737
C2 31.973 50.116 35.115 44.921

Table 3.6: Results of the second proposed method for M(x) as given in (3.4).
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Figure 3.23: Estimate of M(x) and the histograms of the xi’s for the second
proposed method with sample size 100 and noise to signal ratio 1, at the
initial stage, the middle stage when half of the total sample has been used
and the final stage respectively.
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Figure 3.24: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 50 and noise to signal ratio 1.
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Figure 3.25: Estimate of M(x) and the histograms of the xi’s for the second
proposed method with sample size 100 and noise to signal ratio 2, at the
initial stage, the middle stage when half of the total sample has been used
and the final stage respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4

5

6

7

Figure 3.26: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 100 and noise to signal ratio 2.
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3.4 Function with two global maxima and three

local maxima

Here we consider the regression function(figure 3.27),

M(x) = exp(−50(x− 0.1)2) + 1.3 exp(−200(x− 0.3)2) (3.5)

+ exp(−50(x− 0.5)2) + 1.3 exp(−200(x− 0.7)2)

+ exp(−50(x− 0.9)2).
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Figure 3.27: Plot of M(x) given by (3.5).

M(x) has global maxima at x = 0.3 and x = 0.7 and three local maxima
at x = 0.1, x = 0.5 and x = 0.9. The Range of the function is 1.57 and∫ 1

0
M(x) = 0.999.

3.4.1 Results for Kiefer-Wolwowitz procedure

The histograms of the xi’s for sample sizes 50 and 100 are shown in figure 3.28
and figure 3.29 respectively.
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Figure 3.28: Histograms of the xn’s for Kiefer-Wolwowitz procedure with
sample size 50 and, noise to signal ratio 1 and 2 respectively.
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Figure 3.29: Histograms of the xn’s for Kiefer-Wolwowitz procedure with
sample size 100 and, noise to signal ratio 1 and 2 respectively.

Sample size 50 100
Noise to signal ratio 1 2 1 2

Estimate of maximum 0.51004 0.3169 0.45883 0.46019
C1 60.58 35.868 39.33 46.455
C2 66.809 68.692 49.314 74.206

Table 3.7: Results of K-W procedure for M(x) given by (3.5)

3.4.2 Results for the first proposed method

The histograms of the sampled xi’s for sample sizes 50 and 100 are shown
in figure 3.30 and figure 3.31 respectively. Note here the xi’s are clustered
at the true maxima and the C1, C2 criteria values are smaller than that
corresponding to the Kiefer-Wolfowitz procedure..

Sample size 50 100
Noise to signal ratio 1 2 1 2

C1 24.991 47.531 29.196 34.867
C2 41.466 84.867 44.057 65.387

Table 3.8: Results of the first proposed method for M(x) given by (3.5).

3.4.3 Results for the second proposed method

1) Sample size 50 and noise to signal ratio= 1
Here the initial sample size is n1 = 8. The estimate of the regression

function and the histograms of the xi’s sample at the initial stage, the mid-
dle stage when half of the total sample has been used and the final stage
are shown in figure 3.32. The final density Dn and the scatter plot of the
observations are shown in figure 3.33.
2) Sample size 50 and noise to signal ratio =2
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Figure 3.30: Histograms of the xn’s for the first proposed method with sample
size 50 and, noise to signal ratio 1 and 2 respectively.
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Figure 3.31: Histograms of the xn’s for the first proposed method with sample
size 100 and, noise to signal ratio 1 and 2 respectively.

Here the initial sample size is n1 = 8. The estimate of the regression
function and the histograms of the xi’s sample at the initial stage, the mid-
dle stage when half of the total sample has been used and the final stage
are shown in figure 3.34. The final density Dn and the scatter plot of the
observations are shown in figure 3.35.
3) Sample size 100 and noise to signal ratio =1

Here the initial sample size is n1 = 10. The estimate of the regression
function and the histograms of the xi’s sample at the initial stage, the mid-
dle stage when half of the total sample has been used and the final stage
are shown in figure 3.36. The final density Dn and the scatter plot of the
observations are shown in figure 3.37.
4) Sample size 100 and noise to signal ratio= 2

Here the initial sample size is n1 = 10. The estimate of the regression
function and the histograms of the xi’s sample at the initial stage, the mid-
dle stage when half of the total sample has been used and the final stage
are shown in figure 3.38. The final density Dn and the scatter plot of the
observations are shown in figure 3.39.
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Figure 3.32: Estimate of M(x) and histograms of xi’s for the second proposed
method with sample size 50 and noise to signal ratio 1, at the initial stage,
the middle stage when half of the total sample has been used and the final
stage respectively.
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Figure 3.33: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 50 and noise to signal ratio 1.

Sample size 50 100
Noise to signal ratio 1 2 1 2

[0.211,0.267] [0.28,0.314] [0.258,0.33]
Estimate of Xopt ∪ [0.01,0.65] ∪ ∪

[0.673,0.756] [0.675,0.74] [0.645,0.732]
C1 33.686 37.705 23.669 44.836
C2 46.865 76.133 36.774 82.229

Table 3.9: Results of the second proposed method for M(x) given in (3.5).
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Figure 3.34: Estimate of M(x) and histograms of xi’s for the second proposed
method with sample size 50 and noise to signal ratio 2, at the initial stage,
the middle stage when half of the total sample has been used and the final
stage respectively.
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Figure 3.35: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 50 and noise to signal ratio 2.
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Figure 3.36: Estimate of M(x) and the histograms of the xi’s for the second
proposed method with sample size 100 and noise to signal ratio 1, at the
initial step, middle step and final step respectively.
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Figure 3.37: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 50 and noise to signal ratio 1.
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Figure 3.38: Estimate of M(x) and histograms of xi’s for the second proposed
method with sample size 100 and noise to signal ratio 2, at the initial stage,
the middle stage when half of the total sample has been used and the final
stage respectively.
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Figure 3.39: Density of Dn and the scatter plot of the observations in the
second proposed method with sample size 100 and noise to signal ratio 2.
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Chapter 4

Asymptotic results and their
implications

Let X be a compact connected subset of Rd for some d > 0 and X ∗ be a
finite subset of X with |X ∗| = N . For a function g on X , define

m(g) = sup
x∈X

g(x), (4.1)

m∗(g) = sup
x∈X ∗

g(x), (4.2)

Xopt(g) = {x ∈ X : g(x) = m(g)}, (4.3)

X ∗
opt(g) = {x ∈ X ∗ : g(x) = m∗(g)}, (4.4)

∆(g) = sup
x∈X

g(x)− inf
x∈X

g(x), (4.5)

∆∗(g) = sup
x∈X ∗

g(x)− inf
x∈X ∗

g(x), (4.6)

µopt(g) = Uniform distribution over Xopt(g) (4.7)

and µ∗opt(g) = Uniform distribution over X ∗
opt(g). (4.8)

Suppose that M is a continuous function on X . Assume that |Xopt(M)| =
K < ∞ and |Xopt(M)| = K∗. For simplicity, we write m, ∆, µopt,Xopt in place
of m(M), ∆(M), µopt(M), Xopt(M) respectively. Similarly for m∗(M), ∆∗(M),
µ∗opt(M), X ∗

opt(M).
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For asymptotic analysis we introduce a triangular array setup,

(X
(1)
1 , Y

(1)
1 )

(X
(2)
1 , Y

(2)
1 ) (X

(2)
2 , Y

(2)
2 )

· · · · · · . . .

· · · · · · · · · · · ·
(X

(n)
1 , Y

(n)
1 ) (X

(n)
2 , Y

(n)
2 ) · · · (X

(n)
n−1, Y

(n)
n−1) (X

(n)
n , Y

(n)
n )

· · · · · · · · · · · · · · · · · ·

where the nth row corresponds to the data generated according to our algo-
rithm when the total sample size is n.

4.1 Asymptotic Results for the first method

Suppose that given total sample size n, we shall first generate n0(n) design
points using the initial distribution ν(which could be uniform) on X . Based

on the available sample {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n0 , Y

(n)
n0 )} we con-

struct an estimate M̂1

(n)
of M . Then remaining n − n0(n) design points

will be generated as follows. We shall use M̂1

(n)
for the first n1(n) itera-

tions, M̂2

(n)
for the next n2(n) iterations, . . . and M̂tn

(n)
for the last ntn(n)

iterations with T
(n)
i = ∆∗(M̂k

(n)
)/(cn log(i + 1 − n0)), i > n0 where k is

such that
∑k−1

0 ns(n) < i ≤
∑k

0 ns(n) and M̂k
(n)

is an estimate of M based

on {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n0+n1+...+nk−1

, Y
(n)
n0+n1+...+nk−1

)}, for i =
1, 2, 3, · · · , tn.

Theorem 4.1. Consider the above setup. Assume that, a ≤ cn ≤ b for all
large n for some constants a, b ∈ (0, 1).

a) Assume that,

sup
x∈X ∗

∣∣∣M̂tn

(n)
(x)−M(x)

∣∣∣ P−→ 0,

n− n0(n)− ntn(n) −→∞
and (n− n0(n))1−b − (n− n0(n)− ntn(n))1−b −→∞ as n −→∞.

Then,

M
(
X

(n)
k(n)

)
−→ m∗ in probability

and P
(
X

(n)
k(n) ∈ X

∗
opt

)
−→ 1, as n −→∞.
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b) Moreover if there exists an s ≥ 0 such that

n0(n) −→∞, (4.9)∑s
i=0 ni(n)

n
−→ 0 as n −→∞, (4.10)

1

n

tn−1∑
i=s

(si + 1)b

(
1− exp

[
(si + 1)1−b − (si+1 + 1)1−b

1− b

])
−→ 0 (4.11)

and max
s<i≤tn

sup
x∈X ∗

∣∣∣M̂i

(n)
(x)−M(x)

∣∣∣ P−→ 0, (4.12)

where si(n) =
∑i

k=1 nk(n), we have,

ζn(X ∗
opt)

P−→ 1 (4.13)

where ζn is the empirical distribution of {X(n)
1 , X

(n)
2 , . . . , X

(n)
n }.

c) Moreover, if tn = t for all n for some positive integer t and there exists
an s ≥ 0 such that

n0(n) −→∞, (4.14)∑s
i=0 ni(n)

n
−→ 0 as n −→∞, (4.15)

(si+1 + 1)1−b − (si + 1)1−b −→∞,∀ i = s, . . . , t− 1 (4.16)

and max
s<i≤tn

sup
x∈X ∗

∣∣∣M̂i
(n)

(x)−M(x)
∣∣∣ P−→ 0 (4.17)

then ∥∥ζn − µ∗opt

∥∥ P−→ 0. (4.18)

Proof. The proof is given in the appendix. �

Corollary 4.2. Recall the setup as in part (b) of Theorem (4.1). Then,

C3
P−→ m−m∗

m
as n −→∞. (4.19)

4.2 Asymptotic Results for the second method

Recall the setup as in section (4.1). For a set S ⊂ X , define

B(S, ε) = {x ∈ X : d(x, S) ≤ ε}.
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Suppose that {M̂i
(1)

, M̂i
(2)

, . . .} is a sequence of estimates of M for every
1 ≤ i ≤ t, where t is a fixed positive integer. Given the total sample size n,
we shall first generate n0(n) design points using some initial distribution ν
(which could be uniform) on X . Then remaining n − n0(n) = k(n) design
points will be generated as follows. At the kth step, nk iid points will be
generated from Dn

k for k = 1, 2, . . . , t, where,

Sn
k = {x ∈ X : M̂

(n)
k (x) ≥ (1− cn

k) sup
y∈X

M̂
(n)
k (y)}, (4.20)

Un
k = B(Sn

k , rn
k ), (4.21)

Cn
k = Uniform design over Un

k , (4.22)

Dn
k = αn

kDn
k−1 + (1− αn

k)Cn
k (4.23)

and {αn
k}, {cn

k} and {rn
k} are sequences of real numbers in (0, 1) such that for

fixed n, they are decreasing in k and for fixed k, they converge to zero.

Theorem 4.3. Consider the above setup.

a) Assume that,

sup
x∈X

∣∣∣M̂t

(n)
(x)−M(x)

∣∣∣ P−→ 0

and nt −→∞ as n −→∞.

Then,

M
(
X(n)

n

)
−→ m in probability

and P
(
X(n)

n ∈ B(Xopt, ε)
)
−→ 1, as n −→∞ for any ε > 0.

b) Moreover if there exists an s ∈ {0, 1, 2, . . . , t} such that∑s
i=0 ni(n)

n
−→ 0, (4.24)

ni(n) −→∞,∀ i = s + 1, . . . , t, (4.25)

and max
s<i≤t

sup
x∈X

∣∣∣M̂i
(n)

(x)−M(x)
∣∣∣ P−→ 0, as n −→∞. (4.26)

We have for any ε > 0,

ζn(B(Xopt, ε))
P−→ 1 (4.27)

where ζn is the empirical distribution of {X(n)
1 , X

(n)
2 , . . . , X

(n)
n }.
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Proof. The proof is given in the appendix. �

Corollary 4.4. Consider the setup as given in part (b) of theorem (4.3).
Then,

C3
P−→ 0 as n −→∞. (4.28)
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Chapter 5

Concluding Remarks

Our proposed methods apply to cases when the regression function M is a
real-valued continuous function defined on a compact subset of some metric
space under the condition that we can estimate the regression function M
by an estimate which is uniformly weakly consistent. For Euclidean spaces,
we can show the existence of such a sequence of estimates using Nadaraya-
Watson kernel regression estimates and appropriate choice of bandwidth.

5.1 Existence of an estimate of M satisfying

assumption of Theorem 4.1

Suppose that M is a smooth function on a compact subset of Rd for some
d > 0. Fix t ≥ 1. Let {ni(n)}n>0 be a sequence of positive integers ∀ 0 ≤ i ≤ t
such that n =

∑t
i=0 ni(n) and

n0(n) −→∞,
n0(n)

n
−→ 0.

For example, n0(n) =
√

n, ni(n) = (n − n0(n))/t, i = 1, 2, . . . , t will satisfy
the above conditions. Suppose that given sample size n, we take n0(n) sam-

ples X
(n)
1 , X

(n)
2 , . . . , X

(n)
n0(n) uniformly from the design space X .

Let M̂1 be the Nadaraya-Watson kernel estimate of M based on the sample
{(X(n)

1 , Y
(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n0 , Y

(n)
n0 )} with bandwidth hn and kernel

K, where

hn −→ 0,
n0h

d
n

log n0

−→∞.

Then under appropriate conditions on M and K, M̂1 is a uniformly weakly
consistent estimate of M(see e.g., Devroye [5], Silverman [15]). Now suppose
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that we use the procedure according to our proposed methods to generate
the design points. At each stage, we estimate the regression function using
the Nadaraya-Watson kernel estimate based on available samples with the
same bandwidth hn and kernel K. Then the M̂i’s for 1 ≤ i ≤ t are uniformly
weakly consistent estimate of M(see Devroye [5], Silverman [15]). Hence we
have one such sequence. Note that the estimates presented above are not
so practical as we are keeping the bandwidth in Nadaraya-Watson kernel
estimate fixed throughout the experiment. For the estimates to be weakly
consistent we need that for every point in X we have enough data in a small
neighborhood. At every stage if we use bandwidth (which may depend on the
point where we are estimating the function) satisfying the above condition
then we believe that that sequence will also be weakly uniformly consistent
under appropriate condition, but that needs a proof.

In simulation studies and in asymptotic analysis we have seen that our pro-
posed methods are working quite satisfactorily. Now one natural question is
why two methods? We have support for both the methods.

• First note that our first proposed method is easy to implement than
the second one. In the second case, we have to work with design dis-
tributions which are not standard, while in the first case the Markov
chain can easily be implemented.

• Also, for the same sample size, the second method takes longer time to
generate the design points than the first method. In the first method
we have to estimate the regression function only at one point per sam-
ple, while in the second method we have to find the maximum of the
estimate over a large set and also to find the points where the value
of the estimate is near the maximum value. Also generating design
points from the non-standard distributions Dk is far more time con-
suming than generating design points from the Markov chain in the
first method.

• On the other hand, the second method has its own advantages. First
of all as seen in the simulation and the asymptotic analysis, the criteria
values(see 1.4, 1.5, 1.6) are much smaller for the second method.

• The second method takes less samples to estimate the set Xopt accu-
rately. For a given sample size, the first method may miss more points
in Xopt than the second method.
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5.2 Future Works

The following questions arise in the course of the current study and they will
be addressed in a future study.

1. What is the rate of convergence for our proposed methods?

2. How to choose the parameters used in our proposed algorithm opti-
mally?

3. Given a bound on the error in estimating the set Xopt and the maximum
value m, what is the minimum sample size needed to attain that bound?
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Appendix A

Proof of Theorem 4.1

A.1 Proof of part (a) of Theorem 4.1

Without loss of generality, going to a subsequence, we may assume that

sup
x∈X

∣∣∣M̂tn

(n)
(x)−M(x)

∣∣∣ −→ 0 a.s.

Remember that, X ∗ is a finite subset with |X ∗| = N and M is a continuous
function on X with |Xopt(M)| = K < ∞. From now on we shall work
with only X ∗. Hence for simplicity we shall omit the stars in this section.
Remember that X is originally X ∗. For a function g on X , define

m̃(g) = m(g)− sup{g(x) : x ∈ X , g(x) 6= m(g)} (A.1)

Recall that the first n0 design points are generated from the fixed design
distribution ν. From then onwards we are generating the design points se-
quentially using a markov chain where the transition matrix is random and
depends on the step number. Also, note that, the transition matrix at the i-
th step, i > n0, is p(M̂

(n)
k , T

(n)
i ), where T

(n)
i = ∆∗(M̂

(n)
k /(cn log (i + 1− n0)),

k is such that
∑k−1

s=0 ns(n) < i ≤
∑k

s=0 ns(n) and p(M, T ) is the transition
matrix given by,

p(M, T )(x, y) =

{
1
N

exp [− (M(x)−M(y))+

T
], if x 6= y

1− 1
N

∑
z 6=x exp [− (M(x)−M(z))+

T
], if x = y,

(A.2)

and the stationary distribution of p(M, T ) is given by the Gibbs distribution

µ(M, T )(x) =
exp(M(x)/T )∑

y∈X exp(M(y)/T )
, x ∈ X . (A.3)
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We shall show that conditional on {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n−ntn (n),

Y
(n)
n−ntn (n))},

P
(
X(n)

n ∈ Xopt

)
−→ 1, as n −→∞. (A.4)

Then we have conditional on {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n−ntn (n), Y

(n)
n−ntn (n))},

M
(
X(n)

n

) P−→ m

by the fact that

E
(∣∣M (

X(n)
n

)
−m

∣∣ {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n−ntn (n), Y

(n)
n−ntn (n))}

)
≤ 2mP

(
X(n)

n /∈ Xopt {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n−ntn (n), Y

(n)
n−ntn (n))}

)
Then by DCT part (a) of Therem 4.1 will follow easily.

First, we show that A.4 is true for a nonrandom sequence of estimates
{M1, M2, . . .} converging to M uniformly. For simplicity, we write mn, ∆n,
µn

opt, m̃n,X n
opt in place of m(Mn), ∆(Mn), µopt(Mn), m̃(Mn),Xopt(Mn) respec-

tively. To prove that, we use the following lemma,

Lemma A.1 (Rate of convergence). Let X , M, p be as above. Assume Tn =
∆(M)/(c log(n + 1)),∀ n > 1, for some c ∈ (0, b] where 0 < b < 1. Then,
for any initial distribution ν on X , n > m > 0,

‖νPmPm+1 · · ·Pn − µopt‖ ≤ 2 exp

[
m1−b − n1−b

1− b

]
+

6N

mα

where Pi = p(M, Ti) and 0 < α ≤ cm̃
∆

.

Proof. The proof is given later in this section. �

Now Mn’s are converging to M uniformly. Hence, ∃ n0 such that for n > n0,

Xopt(Mn) = Xopt(M), ∆n ≤ ∆ + m̃, m̃n ≥
m̃

4
, (A.5)

and hence,
cnm̃n

∆n

≥ am̃

4(m̃ + ∆)
= α(say).
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Hence for any initial distribution ν on X , we have using lemma A.1,∥∥∥νp(Mn, T
(n)
n−ntn (n)+1)p(Mn, T

(n)
n−ntn (n)+2) · · · p(Mn, T

(n)
n )− µopt

∥∥∥
≤ 2 exp

[
(n− n0(n)− ntn(n) + 1)1−b − (n− n0(n))1−b

1− b

]
+

6N

(n− n0(n)− ntn(n) + 1)α
,

which implies that,

E
(
νp(Mn, T

(n)
n−ntn (n)+1)p(Mn, T

(n)
n−ntn (n)+2) · · · p(Mn, T

(n)
n )

(
X c

opt

))
≤ 2 exp

[
(n− n0(n)− ntn(n) + 1)1−b − (n− n0(n))1−b

1− b

]
+

6N

(n− n0(n)− ntn(n) + 1)α
. (A.6)

Under the assumption in part (a) in Therem 4.1 RHS converges to zero as
n −→∞. This completes the proof for the fixed sequence case.

Now let’s go back to our case. Conditioning on {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · ,

(X
(n)
n−ntn (n), Y

(n)
n−ntn (n))}, and taking ν to be the distribution degenerate at

X
(n)
n−ntn (n), it follows by A.6 that conditionally

E
(
νp(M̂

(n)
tn , T

(n)
n−ntn (n)+1)p(M̂

(n)
tn , T

(n)
n−ntn (n)+2) · · · p(M̂

(n)
tn , T (n)

n )
(
X c

opt

))
= P

(
X(n)

n /∈ Xopt

)
−→ 0

This completes the proof of part (a) of Theorem 4.1. �

A.2 Proof of part (b) of Theorem 4.1

Take 0 < ε < m−m̃
4

. Define,

An,ε = { max
s<i≤tn

sup
x∈X

∣∣∣M̂i
(n)

(x)−M(x)
∣∣∣ ≤ ε}.

Then, by assumption in part (b) of Theorem 4.1 we have,

P (An,ε) −→ 0, as n −→∞.
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Define, si(n) =
∑i

k=1 nk(n). For w ∈ An,ε, by lemma (A.1) we have,∥∥∥δXsi (w)p(M̂
(n)
i+1, si + 1)p(M̂

(n)
i+1, si + 2) · · · p(M̂

(n)
i+1, si + k + 1)− µopt

∥∥∥
≤ 2 exp

[
(si + 1)1−b − (si + k + 1)1−b

1− b

]
+

6N

(si + 1)α/(1+α)
.

Hence,

δXsi (w)p(M̂
(n)
i+1, si + 1)p(M̂

(n)
i+1, si + 2) · · · p(M̂

(n)
i+1, si + k + 1)(X c

opt)

≤ 2 exp

[
(si + 1)1−b − (si + k + 1)1−b

1− b

]
+

6N

(si + 1)α/(1+α)
.

Therefore,

1An,ε

1

n

tn−1∑
i=s

ni+1∑
k=1

δXsi (w)p(M̂
(n)
i+1, si + 1)p(M̂

(n)
i+1, si + 2) · · · p(M̂

(n)
i+1, si + k + 1)(X c

opt)

≤ 2

n

tn−1∑
i=s

ni+1∑
k=1

exp

[
(si + 1)1−b − (si + k + 1)1−b

1− b

]
+

1

n

kn−1∑
i=0

6ni+1N

(si + 1)α/(1+α)

≤ 2

n

tn−1∑
i=s

(si + 1)b

(
1− exp

[
(si + 1)1−b − (si+1 + 1)1−b

1− b

])
+

6N

(n0 + 1)α/(1+α)
.

(A.7)

Taking expectations of LHS of (A.7) after some simplifications we have,

E

[
1

n

tn−1∑
i=s

ni+1∑
k=1

δXsi (w)p(M̂
(n)
i+1, si + 1)p(M̂

(n)
i+1, si + 2) · · · p(M̂

(n)
i+1, si + k + 1)(X c

opt)

]

≤ 2

n

tn−1∑
i=s

(si + 1)b

(
1− exp

[
(si + 1)1−b − (si+1 + 1)1−b

1− b

])
+

6N

(n0 + 1)α/(1+α)

+ P (Ac
n,ε)

−→ 0 as n −→∞.

Now note that,

E
(
ζn(X c

opt)
)

≤ E

[
1

n

tn−1∑
i=s

ni+1∑
k=1

δXsi (w)p(M̂
(n)
i+1, si + 1)p(M̂

(n)
i+1, si + 2) · · · p(M̂

(n)
i+1, si + k + 1)(X c

opt)

]

+

∑s
i=0 ni(n)

n
.

This completes the proof of part (b) of Theorem (4.1). �
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A.3 Proof of part (c) of Theorem 4.1

Under the assumptions of part (c) in Theorem 4.1, the conditions of part (b)
in Theorem 4.1 can be easily verified. Hence, we have

ζn((Xopt)
c)

P−→ 0 (A.8)

Let ζ
(i)
n be the empirical distribution of {X(n)

n0+···+ni−1+1, X
(n)
n0+···+ni−1+2, . . . , X

(n)
n1+···+ni

},
for i = 0, 1, . . . , t.

Then, for any x ∈ X ,

|ζn(x)− µopt(x)| =

∣∣∣∣∣ 1n
n∑

i=0

1
(X

(n)
i =x)

− µopt(x)

∣∣∣∣∣
≤
∑s

i=0 ni(n)

n
+

t∑
i=s+1

ni(n)

n

∣∣ζ i
n(x)− µopt(x)

∣∣ (A.9)

By assumption in part (c) in Therem (4.1),∑s
i=0 ni(n)

n
−→ 0 as n −→∞.

Therefore, it is enough to show that for each i ∈ {s + 1, . . . , t}, x ∈ Xopt,

ni(n)

n

∣∣ζ i
n(x)− µopt(x)

∣∣ P−→ 0 as n −→∞.

We shall show that for each i ∈ {s + 1, . . . , t}, x ∈ Xopt, conditional on

{(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n0+···+ni−1

, Y
(n)
n0+···+ni−1

)},

E

[
ni(n)

n

∣∣ζ i
n(x)− µopt(x)

∣∣]2

−→ 0, as n −→∞. (A.10)

Fix i ∈ {s+1, . . . , t}. By our assumption (n1+· · ·+ni+1)1−b−(n1+· · ·+ni−1+
1)1−b −→ ∞, where cn ≤ b < 1 ∀ n. Hence (A.10) follows using the the fol-

lowing lemma (A.2), conditional on {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), · · · , (X

(n)
n0+···+ni−1

,

Y
(n)
n0+···+ni−1

)} with sn = n1 + · · ·+ ni−1 and an = ni. �

Lemma A.2. Let {M1, M2, . . .} be a nonrandom sequence of estimates of M
converging to M uniformly. Let n = n0 + sn + an ∀ n, where n0 −→ ∞
and (sn + an)1−b − s1−b

n −→ ∞ as n −→ ∞ where 0 < b < 1. For
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fixed n, let {X(n)
1 , · · · , X

(n)
an } be the nonhomogeneous Markov chain with ini-

tial distribution ν and transition matrix P
(n)
i = p(Mn, T

n
i ), where T n

i =
∆(Mn)/(cn log(i + sn)), 0 < a ≤ cn ≤ b ∀ n and ζn be the empirical dis-

tribution of {X(n)
1 , · · · , X

(n)
an }. Then for x ∈ Xopt,(an

n

)2

E (ζn(x)− µopt(x))2 −→ 0, as n −→∞. (A.11)

Proof. Fix x ∈ Xopt. Note that

E
[an

n
|ζn(x)− µopt(x)|

]2
=

1

n2
E

[
(

an∑
i=1

[1
X

(n)
i =x

− µopt(x)])2

]

=
1

n2

an∑
i=1

an∑
j=1

[
P (X

(n)
i = x, X

(n)
j = x)− 2µopt(x)µ

(n)
i (x) + µopt(x)2

]
=

1

n2

an∑
i=1

an∑
j=1

[
P (X

(n)
i = x, X

(n)
j = x)− µopt(x)2

]
+

2

n

an∑
i=1

[µ
(n)
i (x)− µopt(x)]

≤ 2

n2

∑
i<j

∣∣∣P (X
(n)
i = x, X

(n)
j = x)− µopt(x)2

∣∣∣+ 4

n

an∑
i=1

∥∥∥µ(n)
i − µopt

∥∥∥ ,

(A.12)

where µ
(n)
i (x) = P (X

(n)
i = x).

Now for 1 ≤ i < j ≤ an,∣∣∣P (X
(n)
i = x, X

(n)
j = x)− µopt(x)2

∣∣∣
=
∣∣∣µ(n)

i (x) · δxP
(n)
i P

(n)
i+1 · · ·P

(n)
j − µopt(x)2

∣∣∣
≤
∣∣∣δxP

(n)
i P

(n)
i+1 · · ·P

(n)
j − µopt(x)

∣∣∣+ ∣∣∣µ(n)
i (x)− µopt(x)

∣∣∣ . (A.13)

Define,
a

(n)
ij = δxP

(n)
i P

(n)
i+1 · · ·P

(n)
j − µopt(x),∀ 1 ≤ i < j ≤ an.

Hence from (A.12), we have

E
[an

n
|ζn(x)− µopt(x)|

]2
≤ 2

n2

∑
i<j

∣∣∣a(n)
ij

∣∣∣+ 6

n

an∑
i=1

∥∥∥µ(n)
i − µopt

∥∥∥ . (A.14)
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Now, by lemma (A.1), the second term in the RHS of (A.14) goes to zero as
n −→ ∞. To show that the first term also goes to zero as n −→ ∞, note
that for i < j, by lemma (A.1), uniform convergence of {Mn} and the fact
that T n

i = ∆(Mn)/(cn log(i + sn)), we have for large enough n,∣∣∣a(n)
ij

∣∣∣ ≤ ∥∥∥δxP
(n)
i P

(n)
i+1 · · ·P

(n)
j − µopt

∥∥∥
≤ 2 exp

[
(sn + i)1−b − (sn + j)1−b

1− b

]
+

6N

iα
(A.15)

where α = am̃/(4(m̃ + ∆)).

Hence

2

n2

∑
1≤i<j≤an

∣∣∣a(n)
ij

∣∣∣ ≤ 4

n2

∑
1≤i<j≤an

exp

[
(sn + i)1−b − (sn + j)1−b

1− b

]
+

12N

n

an∑
i=1

1

iα

Now,

1

n2

∑
1≤i<j≤an

exp

[
(sn + i)1−b − (sn + j)1−b

1− b

]
=

1

n2

∑
1≤i≤an

exp

[
(sn + i)1−b

1− b

] ∑
i<j≤an

exp

[
−(sn + j)1−b

1− b

]
≤ 1

n2

∑
1≤i≤an

exp

[
(sn + i)1−b

1− b

] ∫ sn+an

sn+i

exp

[
−x1−b

1− b

]
dx

≤ 1

n2

∑
1≤i≤an

exp

[
(sn + i)1−b

1− b

]
(sn + an)b

(
exp

[
−(sn + i)1−b

1− b

]
− exp

[
−(sn + an)1−b

1− b

])
≤ nb

n2

∑
1≤i≤an

(
1− exp

[
(sn + i)1−b − (sn + an)1−b

1− b

])
≤ n · nb

n2
+

nb

n2
exp

[
−(sn + an)1−b

1− b

] ∑
1≤i≤an

exp

[
(sn + i)1−b

1− b

]
≤ 2

n1−b
+

nb

n2
exp

[
−(sn + an)1−b

1− b

] ∑
1≤i<an

exp

[
(sn + i)1−b

1− b

]
≤ 2

n1−b
+

nb

n2
exp

[
−(sn + an)1−b

1− b

] ∫ sn+an

sn

exp

[
x1−b

1− b

]
dx

≤ 2

n1−b
+

nb

n2
exp

[
−(sn + an)1−b

1− b

]
(sn + an)b

(
exp

[
(sn + an)1−b

1− b

]
− exp

[
s1−b

n

1− b

])
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≤ 2

n1−b
+

n2b

n2

(
1− exp

[
s1−b

n − (sn + an)1−b

1− b

])
−→ 0, as n −→∞,

by the fact that 0 < b < 1 and our assumption that (sn+an)1−b−s1−b
n −→∞

as n −→ ∞. So we have, n−2
∑

i<j

∣∣∣a(n)
ij

∣∣∣ −→ 0 as n −→ ∞. This completes

the proof. �

A.4 Proof of lemma (A.1)

Recall that Pi = p(M, Ti). Define µi = µ(M, Ti), the stationary distribu-
tion corresponding to the homogeneous Markov chain with transition matrix
Pi. Note that, using results from standard Markov chain theory (see Win-
kler [23]), we have,

‖νPmPm+1 · · ·Pn − µopt‖
≤ ‖νPmPm+1 · · ·Pn − µmPm · · ·Pn‖+ ‖µmPm · · ·Pn − µopt‖

≤ 2
n∏

k=m

c(Pk) + ‖µmPm · · ·Pn − µopt‖ ,

where c(P ) = 1
2
supx,y∈X ‖P (x, .)− P (y, .)‖.

Now,

n∏
k=m

c(Pk) ≤
n∏

k=m

(1− 1

kc
) = exp

[
n∑

k=m

log(1− 1

kc
)

]

≤ exp

[
−

n∑
k=m

1

kc

]
≤ exp

[
−
∫ n

m

dx

xc

]
= exp

[
m1−c − n1−c

1− c

]
.

and by a result on simulated annealing (see Winkler [23]), for Ti = ∆
c log i

,

‖µiPi · · ·Pn − µopt‖ ≤
6N

icm̃/∆
≤ 6N

iα
, (A.16)

where 0 < α ≤ cm̃
∆

.

Hence the lemma is proved. �
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A.5 Proof of corollary (4.2)

Recall that,

m = sup
x∈X

M(x),

m∗ = sup
x∈X ∗

M(x),

C3 =
1

m

[
m− 1

n

n∑
i=1

M(X
(n)
i )

]
= 1− 1

nm

n∑
i=1

M(X
(n)
i ).

Now,

1

nm

n∑
i=1

M(X
(n)
i ) =

m∗

m
· ζn(X ∗

opt) +
1

nm

∑
i:X

(n)
i /∈X ∗opt

M(X
(n)
i )

P−→ m∗

m
, (A.17)

as ∣∣∣∣∣∣∣
1

n

∑
i:X

(n)
i /∈X ∗opt

M(X
(n)
i )

∣∣∣∣∣∣∣ ≤ m(1− ζn(X ∗
opt)) and ζn(X ∗

opt)
P−→ 1.

Hence, C3
P−→ m−m∗

m
. �
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Appendix B

Proof of Theorem 4.3

Recall that M is a smooth function on X . For a set S ⊂ X , define the closed
ε ball around S

B(S, ε) = {x ∈ X : d(x, S) ≤ ε}.

Suppose that {M̂i

(1)
, M̂i

(2)
, . . .} is a sequence of estimates of M for every

1 ≤ i ≤ t, where t is a fixed positive integer. Let {αn
k}, {cn

k} and {rn
k} be

sequences of real numbers in (0, 1) such that for fixed n, they are decreasing
in k and for fixed k, they converge to zero. Given total sample size n, we
shall first generate n0(n) design points using some initial distribution ν(which
could be uniform distribution) on X . Then remaining n−n0(n) = k(n) design
points will be generated as follows. At the kth step, nk i.i.d. points will be
generated from Dn

k for k = 1, 2, . . . , t, where

Sn
k = {x ∈ X : M̂

(n)
k (x) ≥ (1− cn

k) sup
y∈X

M̂
(n)
k (y)}, (B.1)

Un
k = B(Sn

k , rn
k ), (B.2)

Cn
k = Uniform design over Un

k (B.3)

and Dn
k = αn

kD0 + (1− αn
k)Cn

k . (B.4)

B.1 Proof of part (a) of Theorem 4.3

Without loss of generality, going to a subsequence, we may assume that

sup
x∈X

∣∣∣M̂ (n)
t (x)−M(x)

∣∣∣ −→ 0 a.s.

Note that it is enough to prove that for any ε > 0,

P
(
X(n)

n ∈ B(Xopt, ε)
)
−→ 1. (B.5)
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We shall show that conditional on {X(n)
1 , X

(n)
2 , . . . , X

(n)
n−nt(n)},

P
(
X(n)

n ∈ B(Xopt, ε)
)
−→ 1, as n −→∞. (B.6)

Then, by DCT (B.5), follows easily. We use the following lemma to prove
(B.6) and the proof of it ill be given later.

Lemma B.1. Suppose that {M1, M2, . . .} is a sequence of functions on X
converging to M uniformly, i.e.,,

sup
x∈X

|M(x)−Mn(x)| −→ 0, as n −→∞. (B.7)

Let {αn}, {cn} and {rn} be sequences of real numbers in (0, 1) decreasing to
zero. Define

Sn = {x ∈ X : Mn(x) ≥ (1− cn)mn}, n = 1, 2, . . . (B.8)

S = Xopt(M) (B.9)

Then for any ε > 0,∃ N > 0 such that

B(Sn, rn) ⊆ B(S, ε),∀ n ≥ N. (B.10)

Recall that conditional on {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), . . . , (X

(n)
n−nt(n), Y

(n)
n−nt(n))},

X
(n)
n ∼ Dn

t = αn
t Dn

t−1 + (1− αn
t )Cn

t . Therefore, conditionally

P (X(n)
n ∈ B(Xopt, ε)

c) ≤ αn
t + (1− αn

t )Cn
t (B(Xopt, ε)

c))

≤ αn
t + Cn

t (B(Sn
t , rn

t )c)) for large n

= αn
t

−→ 0 as n −→∞. (B.11)

This completes the proof. �

B.2 Proof of part (b) of Theorem 4.3

Let ζ
(i)
n be the empirical distribution of {X(n)

n0+···+ni−1+1, X
(n)
n0+···+ni−1+2, . . . ,

X
(n)
n0+n1+···+ni

} for i = 0, 1, . . . , t.
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So we have

|ζn(B(Xopt, ε))− 1| = ζn(B(Xopt, ε)
c)

=
1

n

n∑
i=0

1
(X

(n)
i ∈B(Xopt,ε)c)

≤
∑s

i=0 ni(n)

n
+

t∑
i=s+1

ni(n)

n
ζ i
n(B(Xopt, ε)

c)

≤
∑s

i=1 ni(n)

n
+

t∑
i=s+1

ζ i
n(B(Xopt, ε)

c) (B.12)

Therefore, it is enough to show that for i = s + 1, s + 2, . . . , t,

E
(
ζ i
n(B(Xopt, ε)

c)
) P−→ 0. (B.13)

Fix i ∈ {s + 1, s + 2, . . . , t}. Conditional on {(X(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ), . . . ,

(X
(n)
n0+n1+···+ni−1

, Y
(n)
n0+n1+···+ni−1

)},

X
(n)
n0+···+ni−1+j

i.i.d.∼ Dn
i , j = 1, 2, . . . , ni.

Hence, by (B.11),

E
(
ζ i
n(B(Xopt, ε)

c)|(X(n)
1 , Y

(n)
1 ), . . . , (X

(n)
n0+n1+···+ni−1

, Y
(n)
n0+n1+···+ni−1

)
)

= Dn
i (B(Xopt, ε)

c)

−→ 0 as n −→∞.

B.3 Proof of Lemma B.1

Fix ε > 0. There exists η > 0 such that

{x ∈ X : M(x) ≥ m− η} ⊆ B(S, ε/2). (B.14)

Now, choose N > 0 such that

sup
x∈X

|M(x)−Mn(x)| ≤ η

4
, (B.15)∣∣∣cn(m− η

4
)
∣∣∣ ≤ η

4
(B.16)

and rn ≤
ε

2
,∀ n ≥ N. (B.17)
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Then, for n ≥ N, x ∈ Sn, we have

M(x) ≥ Mn(x)− η

4
≥ (1− cn)mn −

η

4
≥ (1− cn)(m− η

4
)− η

4
≥ m− η.

Hence, for n ≥ N ,

B(Sn, rn) = B({x ∈ X : Mn(x) ≥ (1− cn)mn}, rn)

⊆ B({x ∈ X : Mn(x) ≥ m− η}, rn)

⊆ B(B(S,
ε

2
),

ε

2
)

⊆ B(S, ε). (B.18)

This completes the proof of lemma B.1. �

B.4 Proof of corollary (4.4)

Recall that,

m = sup
x∈X

M(x) and C3 = 1− 1

nm

n∑
i=1

M(X
(n)
i ).

Fix ε ∈ (0, 1). Since M(.) is continuous and has finitely many maxima, i.e.,
|Xopt| < ∞, there exists δ > 0 such that d(x,Xopt) ≤ δ implies |M(x)/m− 1| <
ε/2. Now,

|C3| =

∣∣∣∣∣ 1n
n∑

i=1

(
1− M(X

(n)
i )

m

)∣∣∣∣∣
≤

∣∣∣∣∣∣∣
1

n

∑
i:X

(n)
i ∈B(Xopt,δ)

(
1− M(X

(n)
i )

m

)∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
1

n

∑
i:X

(n)
i /∈B(Xopt,δ)

(
1− M(X

(n)
i )

m

)∣∣∣∣∣∣∣
≤ ε

2
ζn(B(Xopt, δ)) + ζn(B(Xopt, δ)

c)

=
ε

2
+ (1− ε

2
)ζn(B(Xopt, δ)

c).

Hence,

P (|C3| > ε) ≤ P
(ε

2
+ (1− ε

2
)ζn(B(Xopt, δ)

c) > ε
)

= P

(
ζn(B(Xopt, δ)

c) >
ε

2− ε

)
−→ 0 as n −→∞.

This completes the proof of corollary (4.4). �
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