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Abstract

Contributions to Stein’s method and some limit theorems in probability

by

Partha Sarathi Dey
Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Sourav Chatterjee, Co-chair
Professor Steven N. Evans, Co-chair

In this dissertation we investigate three different problems related to (1) concentration
inequalities using Stein’s method of exchangeable pair, (2) first-passage percolation along
thin lattice cylinders and (3) limiting spectral distribution of random linear combinations
of projection matrices.

Stein’s method is a semi-classical tool for establishing distributional convergence,
particularly effective in problems involving dependent random variables. A version of Stein’s
method for concentration inequalities was introduced in the Ph.D. thesis of Sourav Chat-
terjee to prove concentration of measure in problems involving complex dependencies such
as random permutations and Gibbs measures.

In the first part of the dissertation we provide some extensions of the theory and
three new applications: (1) We obtain a concentration inequality for the magnetization in
the Curie-Weiss model at critical temperature (where it obeys a non-standard normalization
and super-Gaussian concentration). (2) We derive exact large deviation asymptotics for the
number of triangles in the Erdős-Rényi random graph G(n, p) when p ≥ 0.31. Similar results
are derived also for general subgraph counts. (3) We obtain some interesting concentration
inequalities for the Ising model on lattices that hold at all temperatures.

In the second part, we consider first-passage percolation across thin cylinders of the
form [0, n]× [−hn, hn]d−1. We prove that the first-passage times obey Gaussian central limit
theorems as long as hn grows slower than n1/(d+1). We obtain appropriate moment bounds
and use decomposition of the first-passage time into an approximate sum of independent
random variables and a renormalization type argument to prove the result. It is an open
question as to what is the fastest that hn can grow so that a Gaussian CLT still holds. We
conjecture that n2/3 is the right answer for d = 2 and provide some numerical evidence for
that.

Finally, in the last part we consider limiting spectral distributions of random
matrices of the form

∑k
i=1 aiXiMi where Xi’s are i.i.d. mean zero and variance one random

variables, ai’s are some given sequence of real numbers with `2 norm one and Mi’s are
projection matrices with dimension growing to infinity. We provide sufficient conditions
under which the limiting spectral distribution is Gaussian. We also provide examples from
the theory of representations of symmetric group for which our results hold.
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Chapter 1

Introduction and review of
literature

In his seminal 1972 paper [103], Charles Stein introduced a method for proving
central limit theorems with convergence rates for sums of dependent random variables.
This has now come to be known as Stein’s method. Over the last four decades it has
become a powerful tool in approximating probability distributions and proving limit the-
orems with quantitative rates of convergence. Though the method is very well-developed
for convergence to Poisson and Gaussian distributions, it has also been applied to various
other distributions, from hypergeometric to exponential. All the various formulations of the
method rely on exploiting the characterizing operator or Stein equation of the distribution.
We defer the discussion on Stein’s method with examples until Section 1.2.

On the other hand, concentration inequalities involve “good” bounds on tail prob-
abilities, e.g., on P(|f(X)−E(f(X))| ≥ t) for t > 0 where the distribution of X is specified
and f is a “nice” function. Here we call a bound “good” if it decays to zero rapidly.
The simplest useful example being Chebyshev’s inequality, P(|f(X) − E(f(X))| ≥ t) ≤
t−2 Var(f(X)) for t > 0. In many cases, concentration bounds are precursor of distribu-
tional convergence results. In fact, tightness is an important factor for proving convergence
of processes. For a long time, Azuma-Hoeffding inequality [56, 4] and its relatives (bounded
difference inequality [97, 98], McDiarmid’s inequality [84]) remained the best possible way
to obtain Gaussian type decay e−ct

2
, t ≥ 0, the main ingredient being Doob’s decomposition

into sums of martingale difference sequences (one can view the result as a precursor of the
Gaussian central limit theorem). It was subsequently used in problems from statistics, com-
puter science and other fields, in particular machine learning and empirical process theory.
The most widely used form of Azuma-Hoeffding inequality states the following:

Theorem 1.0.1 (Azuma-Hoeffding inequality [56, 4]). Let {Xi : 1 ≤ i ≤ n} be a mar-
tingale difference sequence adapted to some filtration. Suppose that there exist nonnegative
constants c1, c2, . . . , cn such that |Xi| ≤ ci a.s. for each i. Then for all t ≥ 0 we have

P

(
max

1≤k≤n

k∑
i=1

Xi ≥ t

)
≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
.
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However in the late nineties, starting with Talagrand’s subtle use of induction
argument to get strong concentration bounds for functions on product measure spaces (see
[106, 107, 108]), there have been much more activities in the field of concentration bounds
with higher level of sophistication. In particular, the “entropy method” of Ledoux [75] and
Massart [83] (log-Sobolev and modified log-Sobolev inequalities), exponential Efron-Stein
inequalities of Boucheron, Lugosi and Massart in [22], transportation cost inequalities of
Marton [80, 81, 82], information theoretic inequalities of Dembo [36] are now quite well used.
Talagrand’s convex distance inequality has found applications in fields as diverse as statistics,
combinatorial optimization, random matrix, spin glasses and many more. Theorem 1.0.2
shows an important and useful corollary of the convex distance inequality.

Theorem 1.0.2 (Talagrand [106]). For every product probability measure µn on [0, 1]n,
every convex 1-Lipschitz function f on Rn, and every nonnegative real number t, we have

µn (|f −m(f)| ≥ t) ≤ 4e−t
2/4

where m(f) is the median of f under µn.

We refer the reader to the excellent survey by Ledoux [75] for more results about
concentration inequalities. Here we mention that concentration inequalities have also been
used to understand the geometry of high dimensional spaces and groups (See e.g. [86]) and
it was one of the original motivation behind the initial investigation in concentration results.
While for product measure spaces the general theory works surprisingly well, for random
variables with complex dependency structure, in general, concentration bounds are hard to
get. Many other approaches are available which work well on particular problems.

Stein’s attempts [104] at devising a version of the method for concentration in-
equalities did not prove fruitful. Some progress for sums of dependent random variables
was made by Raič [93]. The problem was finally solved in full generality in [24] using ex-
changeable pair approach. The general abstract result is stated in Section 2.1. A selection
of results and examples from [24] appeared in the later papers [28, 27].

In Chapter 2 of this dissertation we extend the abstract theory and work out some
further examples. We also look at two other problems from first-passage percolation on
lattices and random matrix theory.

1.1 Summary of the Dissertation

We now give a brief chapter by chapter description of this dissertation in the
subsequent subsections. To keep the exposition simple we will avoid the abstract results
and only state the simplest versions of the theorems. The main chapters of this dissertation,
Chapter 2, Chapter 3 and Chapter 4, are independent of each other and may be read in
any order.

1.1.1 Concentration inequalities using exchangeable pairs

In Chapter 2 we derive extension of the concentration inequalities using exchange-
able pair. We also work out three new examples using the method. Let us briefly describe
the examples first.
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The first example being large deviation inequalities for number of triangles in
Erdős-Rényi random graph. Undoubtedly the most famous combinatorial model in proba-
bility is the Erdős-Rényi random graph model G(n, p), which gives a random graph on n
vertices where each edge is present with probability p and absent with probability 1−p inde-
pendently of each other. A triangle is a set of three vertices such that all the three edges are
present in the random graph. The behavior of the upper tail of subgraph counts in G(n, p)
is a problem of great interest in the theory of random graphs (see [17, 60, 62, 110, 70], and
references contained therein). However, it is an open problem to find exact form for the
tail probability depending on n, p upto second order error terms. The best upper bounds to
date were obtained only recently by Chatterjee [29] for triangles and Janson, Oleszkiewicz,
and Ruciński [61] for general subgraph counts. For triangles, the available results state that
for a fixed ε > 0,

P(Tn ≥ (1 + ε)n3p3/6) = exp(−Θ(n2p2| log p|))

where Tn is the number of triangles in G(n, p).
Let us briefly look at the known results about tail bounds for general subgraph

counts. Let F be a finite graph. Let us denote the number of edges in F by e(F ) and
number of vertices by e(G). The quantity of interest is Xn(F ), the number of copies of
F in the Erdős-Rényi random graph G(n, p). We need to define few quantities first before
stating the results. Define

m(F ) := max

{
e(H)

v(H)
| H ⊆ F, v(H) > 0

}
and Φn(F ) := min {E[Xn(H)] | H ⊆ F, e(H) > 0} .

A graph F is called balanced if m(F ) = e(F )/v(F ). The importance of m(F ) comes from
the fact that

Var(Xn(F )) ≈ (1− p)E[Xn(F )]2

Φn(F )

and Φn(F ) → ∞ iff npm(F ) → ∞. A result of Ruciński [96] states that npm(F ) → ∞ and
n2(1 − p) → 0 as n → ∞ is a necessary and sufficient condition for Gaussian CLT for
normalized Xn(F ). The difficult part is to correctly bound the upper tail, since for the
lower tail one can find a strong bound easily (see [60]). One can easily check using FKG
inequality that the the bound is best possible as long as p stays away from one.

Theorem 1.1.1. Let F be a fixed graph. Let Xn(F ) be the number of copies of F in the
Erdős-Rényi random graph G(n, p). Then for any ε > 0 we have

P(Xn(F ) ≤ (1− ε)E[Xn(F )]) ≤ exp(−c(ε)Φn(F ))

for all n, p for some constant c(ε) > 0 depending on ε.

Now to state the results for upper tail bound for Xn(F ), we need two more quan-
tities. For two graphs H,F define

N(F,H) := number of copies of H in F

and N(n,m,H) := max {N(F,H) | v(F ) ≤ n, e(F ) ≤ m} .
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Finally consider

M∗F (n, p) :=

{
max

{
m | For all H ⊆ F,N(n,m,H) ≤ nv(H)pe(H)

}
if p ≥ n−2

1 otherwise.

Now the best known bound for the upper tail for general subgraph count says the following:

Theorem 1.1.2 (Theorem 1.2 in [61]). For every graph F and every ε > 0 there exist
positive real numbers c(ε, F ), C(ε, F ) such that for all n ≥ v(F ) and p ∈ (0, 1) we have

P(Xn(F ) ≥ (1 + ε)E[Xn(F )]) ≤ exp (−c(ε, F )M∗F (n, p))

and, provided (1 + ε)E[Xn(F )] ≤ N(Kn, G),

P(Xn(F ) ≥ (1 + ε)E[Xn(F )]) ≥ exp (−C(ε, F )M∗F (n, p)| log p|)

where Kn is the complete graph on n vertices.

Let ∆(F ) denote the maximum degree of F . Then,

M∗F (n, p) = Θ(n2p∆(F ))

as long as p � n−1/∆(F ) (see [62]). We investigate the behavior of logP(Xn(F ) ≥ (1 +
ε)E[Xn(F )]) when ε and p are fixed.

In Theorem 2.3.4 we prove a large deviation result for the number of triangles in
G(n, p) which gives explicit rate parameters. Let us define the function I(·, ·) on (0, 1)×(0, 1)
as I(r, s) := r log(r/s)+(1−r) log((1−r)/(1−s)) which is the relative entropy of Bernoulli(r)
w.r.t. Bernoulli(s) measure. The function I(·, ·) appears as the large deviation rate function
for number of edges in G(n, p). We prove the following result:

Theorem 1.1.3. Let Tn be the number of triangles in G(n, p), where p > p0 where p0 =
2/(2 + e3/2) ≈ 0.31. Then for any r ∈ (p, 1],

P(Tn ≥ n3r3/6) = e−
1
2
n2I(r,p)(1+o(1)).

Moreover, even if p ≤ p0, there exist p′, p′′ such that p < p′ ≤ p′′ < 1 and the same result
holds for all r ∈ (p, p′) ∪ (p′′, 1].

The result is a nontrivial consequence of Stein’s method for concentration inequal-
ities and involves analyzing the tilted measure, which in this case leads to what is known
as an ‘exponential random graph’, a little studied object in the rigorous literature. Clearly,
our result gives a lot more in the situations where it works (see Figure 1). The method of
proof can be easily extended to prove similar results for general subgraph counts and are
discussed in Section 2.3.3. However, there is an obvious incompleteness in Theorem 2.3.4
(and also for general subgraphs counts), namely, that it does not work for all (p, r). It is an
interesting open problem to solve the large deviation problem for the whole region. Here we
mention that, in a recent article in preparation, Chatterjee and Varadhan [31] have obtained
the large deviation rate function in the full regime using Szemerédi regularity lemma.
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In Section 2.3.1 we prove a super-Gaussian concentration inequality for critical
Curie-Weiss model. The ‘Curie-Weiss model of ferromagnetic interaction’ at inverse tem-
perature β and zero external field is given by the following Gibbs measure on {+1,−1}n.
For a typical configuration σ = (σ1, σ2, . . . , σn) ∈ {+1,−1}n the probability of σ is given
by

Z−1
β exp

β∑
i<j

σiσj/n


where Zβ is the normalizing constant. It is well known that the Curie-Weiss model shows
a phase transition at βc = 1. Using concentration inequalities for exchangeable pairs it was
proved in [24] that for all β ≥ 0, n ≥ 1, t ≥ 0 we have

P
(√
n|m− tanh(βm)| ≥ t+ β/

√
n
)
≤ 2e−t

2/(4+4β).

It is known that at β = 1 as n→∞, n1/4m(σ) converges to the probability distribution on
R having density proportional to exp(−t4/12) (see Simon and Griffiths [100]). The following
concentration inequality stated in Proposition 2.3.1 and derived using Theorem 2.2.2, fills
the gap in the tail bound at the critical point.

Theorem 1.1.4. Suppose σ is drawn from the Curie-Weiss model at the critical temperature
β = 1. Then, for any n ≥ 1 and t ≥ 0 the magnetization satisfies

P(n1/4|m(σ)| ≥ t) ≤ 2e−ct
4

where c > 0 is an absolute constant.

Here we may remark that such a concentration inequality probably cannot be
obtained by application of standard off-the-shelf results (e.g. those surveyed in Ledoux [75],
the famous results of Talagrand [106] or the recent breakthroughs of Boucheron, Lugosi and
Massart [22]), because they generally give Gaussian or exponential tail bounds. There are
several recent remarkable results giving tail bounds different from exponential and Gaussian
(see [14, 74, 9, 45, 33, 15, 49, 50]). However, it seems that none of the techniques given in
these references would lead to the above result. We also look at general critical Curie-Weiss
models. In Section 2.3.4, we derive some interesting concentration bounds for Ising model
on d-dimensional square lattices.

1.1.2 First-passage percolation

In 1965, Hammersley and Welsh [54] introduced first-passage percolation to model
the spread of fluid through a randomly porous media. The model is defined as follows.
Consider the d-dimensional cubic lattice Zd and the edge set E consisting of nearest neighbor
edges. With each edge e ∈ E is associated an independent nonnegative random variable
ωe distributed according to a fixed distribution F . The random variable ωe represents the
amount of time it takes the fluid to pass through the edge e. For a finite path P in Zd

define
ω(P) :=

∑
e∈P

ωe
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as the passage time for P. For x,y ∈ Zd, the first-passage time a(x,y) is defined as the
minimum passage time over all paths from x to y. Intuitively a(x,y) is the first time the
fluid will appear at y if a source of water is introduced at the vertex x at time 0. We
postpone the discussion about known results until Section 3.1.

Convergence to the Tracy-Widom law is known for directed last-passage perco-
lation in Z2 under very special conditions, but the techniques do not carry over to the
undirected case. Naturally, one may expect that convergence to something like the Tracy-
Widom distribution may hold for undirected first-passage percolation also, but surprisingly,
this does not seem to be the case. Here we mention that, in fact, almost no nontrivial
distributional result is known for undirected first-passage percolation.

In Chapter 3 we consider first-passage percolation on Zd with height restricted by
an integer h (which is allowed to grow with n). We define

an(h) := inf{ω(P) | P is a path from 0 to ne1 in Z× {−h,−h+ 1, . . . , h}d−1}

where e1 = (1, 0, . . . , 0). Informally, an(h) is the minimal passage time over all paths which
deviate from the straight line path joining the two end points by a distance at most h.
Given the dimension d, we consider a non-degenerate distribution F supported on [0,∞)
for which we have F (λ) < pc(d) where λ is the smallest point in the support of F and pc(d)
is the critical probability for Bernoulli bond percolation in Zd. Standard result gives that

ν(e1) := lim
n→∞

E[a(0, ne1)]/n (1.1)

exists and is positive when F (0) < pc(d). In Theorem 3.1.2 we proved that for cylinders
that are ‘thin’ enough, a Gaussian CLT holds for an(h) after proper centering and scaling.
Let µn(hn) and σ2

n(hn) be the mean and variance of an(hn).

Theorem 1.1.5. Let F be as above. Suppose E[ωp] <∞ for all p <∞. Let {hn}n≥1 be a
sequence of integers satisfying hn = o(nα) where α < 1/(d+ 1). Then we have

(an(hn)− µn(hn))/σn(hn)
w−→ N(0, 1) as n→∞.

When hn → ∞ as n → ∞, limn→∞ µn(hn)/n = ν(e1), where ν(e1) is defined as in (1.1).
Moreover, we have c1nh

−d+1
n ≤ σ2

n(hn) ≤ c2n for some positive absolute constants ci de-
pending only on d and F .

The main idea behind Theorem 3.1.2 is to decompose an(hn) as an “approximate”
sum of i.i.d. random variables. The CLT is relatively easier to prove when hn = o(n1/(3d−1)).
However, using a blocking technique, which is reminiscent of the “renormalization group”
method, by successively breaking into smaller cylinders, we finally extend the growth rate
of hn to o(n1/(d+1)). In fact Theorem 3.1.2 give rise to a new exponent γ(d) defined as

γ(d) := sup{α : (an(nα)− µn(nα))/σn(nα)
w−→ N(0, 1) as n→∞}.

Clearly we have γ(d) ≥ 1/(d+1) for F having all moments finite and satisfying the conditions
in Theorem 3.1.2. Is γ(d) actually equal to 1/(d + 1)? There are indications that this is
not true. In Section 3.6 we provide some heuristic justifications for that. In Section 3.9 we
provide some numerical results in support of the following conjecture:
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Conjecture 1.1.6. For d = 2, we have γ(d) = 2/3 and σ2
n(hn) = Θ(nh

−1/2
n ).

One of the future project is to prove Central limit theorem upto n2/3 and extend
the idea to passage times involving monotone paths.

1.1.3 Spectra of random linear combination of projection matrices

For a symmetric n × n matrix A, let λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) denote its
eigenvalues arranged in nonincreasing order. The spectral measure ΛA of A is defined as
the empirical measure of its eigenvalues which puts mass 1/n to each of its eigenvalues, i.e.,

ΛA =
1

n

n∑
i=1

δλi(A)

where δx is the dirac measure at x. In particular when the matrix A is random we have a
random spectral measure corresponding to A.

In his seminal paper [111] Wigner proved that the spectral measure for a large
class of random matrices converges to the semi-circular law, as the dimension grows to
infinity. Much work has since been done on various aspects of eigenvalues for different
ensembles of large real symmetric or complex hermitian random matrices, random matrices
coming from Haar measure on classical groups (e.g., orthogonal, unitary, simplectic group).
Some of the results are surveyed in [53, 85]. Many new results have been proved in the last
few years for understanding liming spectral distribution of large random matrices having
complicated algebraic structure. In [23] the authors considered the spectra of large random
Hankel, Markov and Toeplitz matrices which was inspired by an open problem in [5] (see
also [55]). Recently, in [43] the author considered linear combinations of matrices defined
via representations and coxeter generators of the symmetric group.

In many of the examples the random matrix can be written a linear function∑
αXαM

(n)
α of i.i.d. random variables {Xα} where M

(n)
α ’s are deterministic matrices. For

example Wigner matrices can be written as
∑

i≤j XijM
(n)
ij where M

(n)
ij is the n× n matrix

with 1 at the (i, j) and (j, i)-th position and zero everywhere else.

In Chapter 4, we investigate the case when M
(n)
α is a projection matrix (or a affine

transform of a projection matrix). Recall that a projection matrix P satisfies P = P ∗ = P 2.
The Markov random matrix example in [23] and the result in [43] fall in this category.

Let X1, X2, . . . be a sequence of i.i.d. real random variables with E(X1) = 0
and E(X2

1 ) = 1. Given n, suppose we have k = k(n) many n × n symmetric matrices

M
(n)
1 ,M

(n)
2 , . . . ,M

(n)
k . For simplicity, we assume that all M

(n)
i ’s are projection matrices for

i = 1, 2, . . . , k. Now consider the random matrix

An =

k∑
i=1

a
(n)
i XiM

(n)
i

where {a(n)
i } is a sequence of nonnegative real numbers. Let Λn be the spectral measure of

An. Clearly Λn is a random measure on R. In Lemma 4.2.1 we provide simple conditions
under which universality holds.
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We assume that µk(n) := Tr(M
(n)
i1
M

(n)
i2
· · ·M (n)

ik
) depends only on k, n when

i1, i2, . . . , ik’s are distinct integers such that M
(n)
i1
,M

(n)
i2
, . . . ,M

(n)
ik

commute with each other.
Our main theorem (Theorem 4.2.4) says that:

Theorem 1.1.7. Assume that
k(n)∑
i=1

(
a

(n)
i

)2
= 1

and
max

1≤i≤k(n)
|a(n)
i | → 0,

∑
(i,j)∈En

(
a

(n)
i a

(n)
j

)2 → 0 as n→∞

where En := {(i, j) : M
(n)
i does not commute with M

(n)
j }. Also assume that

µ1(n)

n
→ θ and

µ2(n)

n
→ θ2 as n→∞

for some real number θ ∈ [0, 1]. Let Λn be the empirical spectral distribution of

An =

k(n)∑
i=1

a
(n)
i ZiM

(n)
i

where Zi’s are i.i.d. standard Gaussian random variables. Then Λn converges in distribu-
tion (with respect to the topology of weak convergence of probability measures on R) to a
random distribution Λ∞ in probability where Λ∞ = νZ , Z is N(0, 1) and νz is the distribution
N(θz, θ(1− θ)).

In Section 4.2 we describe the main results of Chapter 4. The proof uses moment
method and Malliavin calculus. We will provide several examples from representation theory
of symmetric groups in Section 4.3 and some generalization in Section 4.4.

In the next section we briefly describe the concept of Stein’s method using the
example of magnetization in critical Curie-Weiss model.

1.2 Stein’s method

For two random variables X and Z, the most natural and popular way of measuring
the distance between them is to consider a class of functions F and consider the distance

dF (X,Z) = sup
f∈F
|E[f(X)− f(Z)]|.

Various choices of family F lead to different notions of distances between two probability
measures. Famous examples of such distances include Total variation distance, Kolmogorov
distance, Wasserstein distance and so on.

Stein’s revolutionary idea [103] was that instead of bounding the difference for
every function f ∈ F break the problem into several manageable independent parts and use
the properties of X and Z that will imply their closeness in distribution.
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(a) The first step is, to construct an operator T0 defined on an appropriate function space
HZ that characterizes the distribution of Z in the sense that for some random variable
W , E[T0f(W )] = 0 for all f ∈ HZ implies W and Z have the same distribution. The
operator T0 is called the Stein operator. For example, if Z has a standard normal
distribution, then

(T0f)(x) = f ′(x)− xf(x) for f ∈ D

where D = set of all locally absolutely continuous functions, is a Stein operator.

(b) Similarly we construct an operator T on some function space HX such that E[Tf(X)] =
0 for all f ∈ HX . If we think of X as sample version of Z, then T can be viewed as a
sample version of T0.

(c) Finally, one studies the properties of the pseudo-inverse U of T0, if it exists, such that
T0U(f) = f − Ef(Z) for all f ∈ F and U(F) ⊆ H := HZ ∩HX .

(d) Now, since

|E[f(X)− f(Z)]| = |E[T0Uf(X)]|
= |E(T0 − T )Uf(X)| ≤ sup

g∈H
|E[(T0 − T )g(X)]|

for f ∈ F , the job boils down to showing that the operators T and T0 are “close” when
restricted to the set H. And in most of the cases this is the hardest part to analyze.

Note that if the distribution of Z is the equilibrium distribution of a stationary
reversible Markov process with infinitesimal generator A, then A is a Stein operator for Z.
So the natural thing to consider is to construct a reversible Markov chain with generator
B and having stationary distribution given by the “sample” X and prove convergence of B
to A in appropriate sense to prove process convergence. However, proving convergence for
the equilibrium distribution is much more simpler than proving convergence for the whole
process. The simplicity of Stein’s method of exchangeable pair comes from the fact that
it uses only one step of the reversible Markov chain (which gives an exchangeable pair) to
prove convergence.

In the exchangeable pair approach the “sample” operator T is created using an
exchangeable pair. First construct a random variable X ′ such that (X,X ′) is an exchange-
able pair. Suppose both X,X ′ takes values in X . Then find an operator α such that for
any suitable real valued function g : X → R, αg : X ×X → R is an antisymmetric function
(that is, (αg)(x, x′) = (αg)(x′, x)). Then, by antisymmetry, the operator

Tg(x) = E[(αg)(X,X ′)|X = x]

gives a “sample” characterizing operator and the problem boils down to bounding

sup
x
|(T − T0)g(x)|

for g ∈ UF .
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There are other variations of Stein’s method that exploit the characterizing op-
erator in different ways, for example the zero bias transformation popularized by Gold-
stein [47, 46], the size bias coupling [7, 8, 48], dependency graph approach of Arratia,
Goldstein and Gordon [2, 3], and other ad hoc methods [18, 34], but we shall not discuss
those here. For further discussion and exposition on Stein’s method of exchangeable pair
we refer to the monograph [37].

1.2.1 Exact convergence rate in critical Curie-Weiss model

We illustrate the concept using the example of magnetization in critical Curie-
Weiss model and finding the exact rate of convergence w.r.t. Wasserstein distance. An
upper bound for the convergence rate w.r.t. kolmogorov distance is given in [30] (see also
[39]).

First we recall the definition of critical Curie-Weiss model from Subsection 1.1.1.
The critical Curie-Weiss model of ferromagnetic interaction at zero external field is given by
the following gibbs measure on {+1,−1}n. For a typical configuration σ = (σ1, σ2, . . . , σn) ∈
{+1,−1}n the probability of σ is given by

µn(σ) := Z−1
n exp

 1

n

∑
i<j

σiσj

 .

where Zn is the normalizing constant. Define the magnetization as m(σ) = 1
n

∑n
i=1 σi.

Consider the random variable Xn = n1/4m(σ) where σ ∼ µn. It is known that Xn converges
in distribution to Z as n→∞ where Z has density proportional to exp(−t4/12) (see Simon
and Griffiths [100]). As stated earlier, in Section 2.3.1 we will prove a super-Gaussian
concentration inequality for Xn. Here we consider the rate of convergence w.r.t. Wasserstein
distance:

dW(Xn, Z) = sup
g:supx∈R |g′(x)|≤1

|E(g(Xn)− g(Z))| .

We show that,

Lemma 1.2.1. There exists a constant a ∈ (0,∞) such that,

n1/2dW(Xn, Z)→ a

as n→∞.

Proof. Here we have F = {g : R → R | g is 1-Lipschitz}. It is easy to check that the
operator T0 acting on functions in F by

T0f(x) = f ′(x)− x3f(x)/3

is a Stein operator for the distribution of Z. Also the operator U defined by

Ug(x) := ex
4/12

∫ x

∞
(g(y)− E(g(Z)))e−y

4/12 dx
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gives the pseudo-inverse of T0 in the sense that (T0U)g = g − E(g(Z)) for all g ∈ F . An
analytical calculation (or see Lemma 4.1 in [30]) shows that

UF ⊆ H := {f : R→ R | f is twice differentiable, sup
x∈R

(|f ′(x)|+ |f ′(x)|+ |f ′′(x)|) ≤ c}

for a constant c <∞.
Now we construct the sample operator Tn using exchangeable pair. Let σ′ be

obtained from σ by one step of the heat-bath Glauber dynamics: A coordinate I is chosen
uniformly at random from {1, 2, . . . , n}, and σI is replace by σ′I drawn from the conditional
distribution of the I-th coordinate given {σj : j 6= I}. An easy computation gives that
E(σi|{σj , j 6= i}) = tanh(mi) where mi = mi(σ) = n−1

∑
j 6=i σj for all i = 1, 2, . . . , n. Now

define X ′n = n1/4m(σ′). Clearly (Xn, X
′
n) is an exchangeable pair and we have X ′n −Xn =

n−3/4(σ′I − σI) where I is uniform over {1, 2, . . . , n}.
Given a function f ∈ H, define the function F : R→ R by

F (x) =

∫ x

0
f(y)dy for x ∈ R

so that F ′ = f . Note that f is twice-differentiable. We define

Tnf(x) := n3/2E[F (X ′n)− F (Xn)|Xn = x].

By Taylor approximation (and the fact that |Xn −X ′n| ≤ 2n−3/4 a.s.) we have

Tnf(x)

= n3/2f(x)E(X ′n −Xn|Xn = x) +
n3/2f ′(x)

2
E((X ′n −Xn)2|Xn = x) +R

(1.2)

where |R| ≤ n3/2/6×(2n−3/4)3 supx∈R |f ′′(x)| ≤ Cn−3/4 for some constant C. After explicit
calculation and substituting the conditional means we have

n3/2E[X ′n −Xn|Xn] = n3/4E

[
1

n

n∑
i=1

tanh(mi(σ))−m(σ)

∣∣∣∣m(σ)

]
. (1.3)

We now expand the hyperbolic tangent function upto degree 7 using Taylor series to obtain

tanh(mi) = mi −
1

3
m3
i +

2

15
m5
i +O(|mi|7)

= m− 1

3
m3 +

2

15
m5 − σi

n

(
1−m2 +

2

3
m3

)
+ εi

where E |εi| ≤ Cn−9/4 for all i = 1, 2, . . . , n and C is a universal constant. Substituting in
(1.3) it follows that

n3/2E[X ′n −Xn|Xn] = n3/4

[
−1

3
m3 +

2

15
m5 − 1

n

(
m−m3 +

2

3
m4

)]
+ n−1/4

n∑
i=1

εi

= −1

3
X3
n −

1√
n

(
Xn −

2

15
X5
n

)
+R1
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where E |R1| ≤ Cn−1. Similarly we have

1

2
n3/2E[(X ′n −Xn)2|Xn] = E[1− σIσ′I |Xn]

= 1− 1

n

n∑
i=1

σi tanh(mi(σ)) = 1− X2
n√
n
−R2

where E |R2| ≤ Cn−1. Substituting in equation (1.2) we finally have

Tnf(x) = f ′(x)

(
1− x2

√
n

)
− f(x)

(
1

3
x3 +

1√
n

(
x− 2

15
x5

))
+R′

where |R′| ≤ Cn−3/4 for some constant C <∞. Now claerly

√
nE(Tnf(Xn)− T0f(Xn)) = −E(X2

nf
′(Xn) +

(
Xn −

2

15
X5
n

)
f(Xn)) +R′′

where |R′′| ≤ Cn−1/4. It thus follows that

dW(Xn, Z) ≤ cn−1/2

for some constant c. Now note that

E

[
X2
nf
′(Xn) +

(
Xn −

2

15
X5
n

)
f(Xn)

]
−→ E

(
Z2f ′(Z) + Z

(
1− 2

15
Z4

)
f(Z)

)
=

1

5
E[Z(Z4 − 5)f(Z)]

as n→∞ by uniform integrability. Here we used the fact that E[f ′(Z)] = 1
3 E[Z3f(Z)] for

all f , specially for x2f(x). Define the function

f(x) :=
cx

1 + x4
, x ∈ R

and g(x) := f ′(x)− x3

3 f(x) where c > 0 is some constant to be specified later. It is easy to
check that g is 1-Lipschitz for appropriate choice of c. Now

E[Z(Z4 − 5)f(Z)] = E
cZ2(Z4 − 5)

1 + Z4
6= 0.

Hence dW(Xn, Z) = Θ(n−1/2). Moreover we have

lim
n→∞

n1/2dW(Xn, Z) =
1

5
sup

f :f=Ug
g 1-Lipschitz

∣∣E[Z(Z4 − 5)f(Z)]
∣∣ .

�
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Chapter 2

Concentration inequalities using
exchangeable pairs

2.1 Introduction

Stein’s method was introduced by Charles Stein in the early seventies to prove
central limit theorem for dependent random variables and more importantly to find explicit
estimates for the accuracy of the approximation. The technique is primarily used for proving
distributional limit theorems (both Gaussian and non-Gaussian). Stein’s attempts [104] at
devising a version of the method for large deviations did not prove fruitful. Some progress
for sums of dependent random variables was made by Raič [93]. The problem was finally
solved in full generality in [24]. A selection of results and examples from [24] appeared in
the later papers [28, 27]. In this chapter we extend the theory and work out some further
examples.

The sections are organized as follows. In Section 2.2 we state the main results.
In Section 2.3 we state the examples and some proof sketches. The complete proofs are in
Section 2.4.

2.2 Results

The following abstract theorem is quoted from [28]. It summarizes a collection of
results from [24]. This is a generalization of Stein’s method of exchangeable pairs to the
realm of concentration inequalities and large deviations.

Theorem 2.2.1 ([28], Theorem 1.5). Let X be a separable metric space and suppose (X,X ′)
is an exchangeable pair of X -valued random variables. Suppose f : X → R and F : X×X →
R are square-integrable functions such that F is antisymmetric (i.e. F (X,X ′) = −F (X ′, X)
a.s.), and E(F (X,X ′) | X) = f(X) a.s. Let

∆(X) :=
1

2
E
(
|(f(X)− f(X ′))F (X,X ′)|

∣∣X).
Then E(f(X)) = 0, and the following concentration results hold for f(X):
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(i) If E(∆(X)) <∞, then Var(f(X)) = 1
2 E((f(X)− f(X ′))F (X,X ′)).

(ii) Assume that E(eθf(X)|F (X,X ′)|) <∞ for all θ. If there exists nonnegative constants
B and C such that ∆(X) ≤ Bf(X) + C almost surely, then for any t ≥ 0,

P{f(X) ≥ t} ≤ exp

(
− t2

2C + 2Bt

)
and P{f(X) ≤ −t} ≤ exp

(
− t2

2C

)
.

(iii) For any positive integer k, we have the following exchangeable pairs version of the
Burkholder-Davis-Gundy inequality:

E(f(X)2k) ≤ (2k − 1)k E(∆(X)k).

Note that the finiteness of the exponential moment for all θ ensures that the tail
bounds hold for all t. If it is finite only in a neighborhood of zero, the tail bounds will hold
for t less than a threshold.

One of the contributions of the present thesis is the following generalization of
the above result for non-Gaussian tail behavior. We apply it to obtain a concentration
inequality with the correct tail behavior in the Curie-Weiss model at criticality.

Theorem 2.2.2. Suppose (X,X ′) is an exchangeable pair of random variables. Let F (X,X ′),
f(X) and ∆(X) be as in Theorem 2.2.1. Suppose that we have

∆(X) ≤ ψ(f(X)) almost surely

for some nonnegative symmetric function ψ on R. Assume that ψ is nondecreasing and
twice continuously differentiable in (0,∞) with

α : = sup
x>0

xψ′(x)/ψ(x) < 2 (2.1)

and δ : = sup
x>0

xψ′′(x)/ψ(x) <∞. (2.2)

Assume that E(|f(X)|k) <∞ for all positive integer k ≥ 1. Then for any t ≥ 0 we have

P(|f(X)| > t) ≤ c exp

(
− t2

2ψ(t)

)
for some constant c depending only on α, δ. Moreover, if ψ is only once differentiable with
α < 2 as in (2.1), then the tail inequality holds with exponent t2/4ψ(t).

An immediate corollary of Theorem 2.2.2 is the following.

Corollary 2.2.3. Suppose (X,X ′) is an exchangeable pair of random variables. Let F (X,X ′),
f(X) and ∆(X) be as in Theorem 2.2.1. Suppose that for some real number α ∈ (0, 2) we
have

∆(X) ≤ B |f(X)|α + C almost surely
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where B > 0, C ≥ 0 are constants. Assume that E(|f(X)|k) < ∞ for all positive integer
k ≥ 1. Then for any t ≥ 0 we have

P(|f(X)| > t) ≤ cα exp

(
−1

2
· t2

Btα + C

)
for some constant cα depending only on α.

The result in Theorem 2.2.2 states that the tail behavior of f(X) is essentially
given by the behavior of f(X)2/∆(X). Condition (2.1) implies that ψ(x) < ψ(1)(1 + x2)
for all x ∈ R. Moreover, the constant cα appearing in Theorem 2.2.2 can be written down
explicitly but we did not attempt to optimize the constant. The proof of Theorem 2.2.2 is
along the same lines as Theorem 2.2.1, but somewhat more involved. Deferring the proof
to Section 2.4, let us move on to examples.

2.3 Examples

2.3.1 Curie-Weiss model at criticality

The ‘Curie-Weiss model of ferromagnetic interaction’ at inverse temperature β
and zero external field is given by the following Gibbs measure on {+1,−1}n. For a typical
configuration σ = (σ1, σ2, . . . , σn) ∈ {+1,−1}n the probability of σ is given by

µβ({σ}) := Z−1
β exp

β
n

∑
i<j

σiσj


where Zβ = Zβ(n) is the normalizing constant. It is well known that the Curie-Weiss model
shows a phase transition at βc = 1. For β < βc the magnetization m(σ) := 1

n

∑n
i=1 σi is

concentrated at 0 but for β > βc the magnetization is concentrated on the set {−x∗, x∗}
where x∗ > 0 is the largest solution of the equation x = tanh(βx). In fact using concentra-
tion inequalities for exchangeable pairs it was proved in [24] (Proposition 1.3) that for all
β ≥ 0, h ∈ R, n ≥ 1, t ≥ 0 we have

P

(
|m− tanh(βm+ h)| ≥ β

n
+

t√
n

)
≤ 2 exp

(
− t2

4(1 + β)

)
,

where h is the external field, which is zero in our case. Although a lot is known about
this model (see Ellis [40] Section IV.4 for a survey), the above result – to the best of
our knowledge – is the first rigorously proven concentration inequality that holds at all
temperatures. (See also [33] for some related results.)

Incidentally, the above result shows that when β < 1, the magnetization is at
most of order n−1/2. It is known that at the critical temperature the magnetization m(σ)
shows a non Gaussian behavior and is of order n−1/4. In fact, at β = 1 as n → ∞,
n1/4m(σ) converges to the probability distribution on R having density proportional to
exp(−t4/12). This limit theorem was first proved by Simon and Griffiths [100] and error
bounds were obtained recently [30, 39]. The following concentration inequality, derived
using Theorem 2.2.2, fills the gap in the tail bound at the critical point.
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Proposition 2.3.1. Suppose σ is drawn from the Curie-Weiss model at the critical tem-
perature β = 1. Then, for any n ≥ 1 and t ≥ 0 the magnetization satisfies

P(n1/4|m(σ)| ≥ t) ≤ 2e−ct
4

where c > 0 is an absolute constant.

Here we may remark that such a concentration inequality probably cannot be
obtained by application of standard off-the-shelf results (e.g. those surveyed in Ledoux [75],
the famous results of Talagrand [106] or the recent breakthroughs of Boucheron, Lugosi and
Massart [22]), because they generally give Gaussian or exponential tail bounds. There are
several recent remarkable results giving tail bounds different from exponential and Gaussian.
The papers [74, 45, 33] deal with tails between exponential and Gaussian and [9, 15] deal
with sub-exponential tails. Also in [14, 49, 50] the authors deal with tails (possibly) larger
than Gaussian. However, it seems that none of the techniques given in these references
would lead to the result of Proposition 2.3.1.

It is possible to derive a similar tail bound using the asymptotic results of Martin-
Löf [79] about the partition function Zβ(n) (see also Bolthausen [19]). An application of
their results gives that∑

σ∈{−1,+1}n
e
n
2
m(σ)2+nθm(σ)4 ' 2n+1Γ(5/4)√

2π

(
12n

1− 12θ

)1/4

for θ < 1/12 in the sense that the ratio of the two sides converges to one as n goes to
infinity and from here the tail bound follows easily (without an explicit constant). However
this approach depends on a precise estimate of the partition function (for example, large
deviation estimates or finding the limiting free energy limn−1 logZβ(n) are not enough)
and this precise estimate is hard to prove. Our method, on the other hand, depends only
on simple properties of the Gibbs measure and is not tied specifically to the Curie-Weiss
model.

The idea used in the proof of Proposition 2.3.1 can be used to prove a tail inequality
that holds for all 0 ≤ β ≤ 1. We state the result below without proof. Note that the
inequality gives the correct tail bound for all 0 ≤ β ≤ 1.

Proposition 2.3.2. Suppose σ is drawn from the Curie-Weiss model at inverse temperature
β where 0 ≤ β ≤ 1. Then, for any n ≥ 1 and t ≥ 0 the magnetization satisfies

P(3(1− β)m(σ)2 + β3m(σ)4 ≥ t) ≤ 2e−nt/160.

It is possible to derive similar non-Gaussian tail inequalities for general Curie-
Weiss models at the critical temperature. We briefly discuss the general case below. Let ρ
be a symmetric probability measure on R with

∫
x2 dρ(x) = 1 and

∫
exp(βx2/2) dρ(x) <∞

for all β ≥ 0. The general Curie-Weiss model CW(ρ) at inverse temperature β is defined as
the array of spin random variables X = (X1, X2, . . . , Xn) with joint distribution

dνn(x) = Z−1
n exp

(
β

2n
(x1 + x2 + · · ·+ xn)2

) n∏
i=1

dρ(xi) (2.3)
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for x = (x1, x2, . . . , xn) ∈ Rn where

Zn =

∫
exp

(
β

2n
(x1 + x2 + · · ·+ xn)2

) n∏
i=1

dρ(xi)

is the normalizing constant. The magnetization m(x) is defined as usual by m(x) =
n−1

∑n
i=1 xi. Here we will consider the case when ρ satisfies the following two conditions:

(A) ρ has compact support, that is, ρ([−L,L]) = 1 for some L <∞.

(B) The equation h′(s) = 0 has a unique root at s = 0 where

h(s) :=
s2

2
− log

∫
exp(sx) dρ(x) for s ∈ R.

The second condition says that h(·) has a unique global minima at s = 0 and |h′(s)| > 0 for
|s| > 0. The behavior of this model is quite similar to the classical Curie-Weiss model and
there is a phase transition at β = 1. For β < 1, m(X) is concentrated around zero while
for β > 1,m(X) is bounded away from zero a.s. (see Ellis and Newman [42, 41]). We will
prove the following concentration result.

Proposition 2.3.3. Suppose X ∼ νn at the critical temperature β = 1 where ρ satisfies
condition (A) and (B). Let k be such that h(i)(0) = 0 for 0 ≤ i < 2k and h(2k)(0) 6= 0,
where

h(s) :=
s2

2
− log

∫
exp(sx) dρ(x) for s ∈ R

and h(i) is the i-th derivative of h. Then, k > 1 and for any n ≥ 1 and t ≥ 0 the
magnetization satisfies

P(n1/2k|m(X)| ≥ t) ≤ 2e−ct
2k

where c > 0 is an absolute constant depending only on ρ.

Here we mention that in Ellis and Newman [42], convergence results were proved
for the magnetization in CW(ρ) model under optimal condition on ρ. Under our assumption
their result says that n1/2km(X) converges weakly to a distribution having density propor-
tional to exp(−λx2k/(2k)!) where λ := h(2k)(0). Hence the tail bound gives the correct
convergence rate.

Let us now give a brief sketch of the proof of Proposition 2.3.1. Suppose σ is
drawn from the Curie-Weiss model at the critical temperature. We construct σ′ by taking
one step in the heat-bath Glauber dynamics: A coordinate I is chosen uniformly at random,
and σI is replace by σ′I drawn from the conditional distribution of the I-th coordinate given
{σj : j 6= I}. Let

F (σ,σ′) :=

n∑
i=1

(σi − σ′i) = σI − σ′I .
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For each i = 1, 2, . . . , n, define mi = mi(σ) = n−1
∑

j 6=i σj . An easy computation gives that
E(σi|{σj , j 6= i}) = tanh(mi) for all i and so we have

f(σ) := E(F (σ,σ′)|σ) = m− 1

n

n∑
i=1

tanh(mi) =
m

n
+

1

n

n∑
i=1

g(mi)

where g(x) := x − tanh(x). Note that |mi −m| ≤ 1/n, and hence f(σ) = m − tanhm +
O(1/n). A simple analytical argument using the fact that, for x ≈ 0, x− tanhx = x3/3 +
O(x5) then gives

∆(σ) ≤ 6

n
|f(σ)|2/3 +

12

n5/3

and using Corollary 2.2.3 with α = 2/3, B = 6/n and C = 12/n5/3 we have

P(|m− tanhm| ≥ t+ n−1) ≤ P(|f(σ)| ≥ t) ≤ 2e−cnt
4/3

for all t ≥ 0 for some constant c > 0. It is easy to see that this implies the result. The
critical observation, of course, is that x− tanh(βx) = O(x3) for β = 1, which is not true for
β 6= 1.

2.3.2 Triangles in Erdős-Rényi graphs

Consider the Erdős-Rényi random graph model G(n, p) which is defined as follows.
The vertex set is [n] := {1, 2, . . . , n} and each edge (i, j), 1 ≤ i < j ≤ n is present with
probability p and not present with probability 1 − p independently of each other. For any
three distinct vertex i < j < k in [n] we say that the triple (i, j, k) forms a triangle in the
graph G(n, p) if all the three edges (i, j), (j, k), (i, k) are present in G(n, p) (see figure 2.1).
Let Tn be the number of triangles in G(n, p), that is

Tn :=
∑

1≤i<j<k≤n
1{(i, j, k) forms a triangle in G(n, p)}.

Figure 2.1: A graph with 3 triangles: (1, 2, 3), (1, 3, 4) and (1, 3, 6).

Let us define the function I(·, ·) on (0, 1)× (0, 1) as

I(r, s) := r log
r

s
+ (1− r) log

1− r
1− s

. (2.4)

Note that I(r, s) is the Kullback-Leibler divergence of the measure νs from νr and also the
relative entropy of νr w.r.t. νs where νp is the Bernoulli(p) measure. We have the following
result about the large deviation rate function for the number of triangles in G(n, p).
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Theorem 2.3.4. Let Tn be the number of triangles in G(n, p), where p > p0 where p0 =
2/(2 + e3/2) ≈ 0.31. Then for any r ∈ (p, 1],

P

(
Tn ≥

(
n

3

)
r3

)
= exp

(
−n

2I(r, p)

2
(1 +O(n−1/2))

)
. (2.5)

Moreover, even if p ≤ p0, there exist p′, p′′ such that p < p′ ≤ p′′ < 1 and the same result
holds for all r ∈ (p, p′) ∪ (p′′, 1]. For all p and r in the above domains, we also have the
more precise estimate

P

(∣∣∣∣Tn − (n3
)
r3

∣∣∣∣ ≤ C(p, r)n5/2

)
= exp

(
−n

2I(r, p)

2
(1 +O(n−1/2))

)
, (2.6)

where C(p, r) is a constant depending on p and r.

Figure 2.2: The set of (p, r), r ≥ p for which our large deviation result holds.

The behavior of the upper tail of subgraph counts in G(n, p) is a problem of great
interest in the theory of random graphs (see [17, 60, 62, 110, 70], and references contained
therein). The best upper bounds to date were obtained by Kim and Vu [70] (triangles)
and Janson, Oleszkiewicz, and Ruciński [61] (general subgraph counts). For triangles, the
results of these papers essentially state that for a fixed ε > 0,

exp(−Θ(n2p2 log(1/p))) ≤ P(Tn ≥ E(Tn) + εn3p3) ≤ exp(−Θ(n2p2)).

In a very recent development Chatterjee [29] proved that in the case of triangles, in fact,
for any fixed ε > 0,

P(Tn ≥ E(Tn) + εn3p3) = exp(−Θ(n2p2 log(1/p))).
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Clearly, our result gives a lot more in the situations where it works (see Figure 2.2).
The method of proof can be easily extended to prove similar results for general subgraph
counts and are discussed in Subsection 2.3.3. However, there is an obvious incompleteness
in Theorem 2.3.4 (and also for general subgraphs counts), namely, that it does not work for
all (p, r).

In this context, we should mention that another paper on large deviations for
subgraph counts by Bolthausen, Comets and Dembo [20] is in preparation. As of now, to
the best of our knowledge, the authors of [20] have only looked at subgraphs that do not
complete loops, like 2-stars. Another related article is the one by Döring and Eichelsbacher
[38], who obtain moderate deviations for a class of graph-related objects, including triangles.
Very recently using Szemerédi regularity lemma, Chatterjee and Varadhan [31] obtained the
large deviation rate function in the full regime in an article in preparation.

Unlike the previous two examples, Theorem 2.3.4 is far from being a direct con-
sequence of any of our abstract results. Therefore, let us give a sketch of the proof, which
involves a new idea.

The first step is standard: consider tilted measures. However, the appropriate
tilted measure in this case leads to what is known as an ‘exponential random graph’, a little
studied object in the rigorous literature. Exponential random graphs have become popular
in the statistical physics and network communities in recent years (see the survey of Park
and Newman [90]). The only rigorous work we are aware of is the recent paper of Bhamidi
et. al. [12], who look at convergence rates of Markov chains that generate such graphs.

We will not go into the general definition or properties of exponential random
graphs. Let us only define the model we need for our purpose.

Fix two numbers β ≥ 0 and h ∈ R. Let Ω = {0, 1}(
n
2) be the space of all tuples

like x = (xij)1≤i<j≤n, where xij ∈ {0, 1} for each i, j. Let X = (Xij)1≤i<j≤n be a ran-
dom element of Ω following the probability measure proportional to eH(x), where H is the
Hamiltonian

H(x) =
β

n

∑
1≤i<j<k≤n

xijxjkxik + h
∑

1≤i<j≤n
xij .

Note that any element of Ω naturally defines an undirected graph on a set of n vertices. For
each x ∈ Ω, let T (x) =

∑
i<j<k xijxjkxik denote the number of triangles in the graph defined

by x, and let E(x) =
∑

i<j xij denote the number of edges. Then the above Hamiltonian is
nothing but

βT (x)

n
+ hE(x).

For notational convenience we will assume that xij = xji. Let Zn(β, h) be the corresponding
partition function, that is

Zn(β, h) =
∑
x∈Ω

eH(x).

Note that β = 0 corresponds to the Erdős-Rényi random graph with p = eh/(1 + eh). The
following theorem ‘solves’ this model in a ‘high temperature region’. Once this solution is
known, the computation of the large deviation rate function is just one step away.
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Theorem 2.3.5 (Free energy in high temperature regime). Suppose we have β ≥ 0, h ∈ R,
and Zn(β, h) defined as above. Define a function ϕ : [0, 1]→ R as

ϕ(x) =
eβx+h

1 + eβx+h
.

Suppose β and h are such that the equation u = ϕ(u)2 has a unique solution u∗ in [0, 1] and
2ϕ(u∗)ϕ′(u∗) < 1. Then

lim
n→∞

logZn(β, h)

n2
= −1

2
I(ϕ(u∗), ϕ(0))− 1

2
log(1− ϕ(0)) +

βϕ(u∗)3

6
,

where I(·, ·) is the function defined in (2.4). Moreover, there exists a constant K(β, h)
that depends only on β and h (and not on n) such that difference between the limit and
n−2 logZn(β, h) is bounded by K(β, h)n−1/2 for all n.

Incidentally, the above solution was obtained using physical heuristics by Park and
Newman [91] in 2005. Here we mention that, in fact, the following result is always true.

Lemma 2.3.6. For any β ≥ 0, h ∈ R we have

lim inf
n→∞

logZn(β, h)

n2
≥ sup

r∈(0,1)

{
−1

2
I(r, ϕ(0))− 1

2
log(1− ϕ(0)) +

βr3

6

}
(2.7)

= sup
u:ϕ(u)2=u

{
−1

2
I(ϕ(u), ϕ(0))− 1

2
log(1− ϕ(0)) +

βϕ(u)3

6

}
.

We will characterize the set of β, h for which the conditions in Theorem 2.3.5 hold
in Lemma 2.3.9. First of all, note that the appearance of the function ϕ(u)2 − u is not
magical. For each i < j, define

Lij =
1

n

∑
k 6∈{i,j}

XikXjk.

This is the number of ‘wedges’ or 2-stars in the graph that have the edge ij as base. The
key idea is to use Theorem 2.2.1 to show that these quantities approximately satisfy the
following set of ‘mean field equations’:

Lij '
1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk) for all i < j. (2.8)

(The idea of using Theorem 2.2.1 to prove mean field equations was initially developed in
Section 3.4 of [24].) The following lemma makes this notion precise. Later, we will show
that under the conditions of Theorem 2.3.5, this system has a unique solution.

Lemma 2.3.7 (Mean field equations). Let ϕ be defined as in Theorem 2.3.5. Then for any
1 ≤ i < j ≤ n, we have

P

√n∣∣∣∣Lij − 1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk)

∣∣∣∣ ≥ t
 ≤ 2 exp

(
− t2

8(1 + β)

)
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for all t ≥ 8β/n. In particular we have

E

∣∣∣∣Lij − 1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk)

∣∣∣∣ ≤ C(1 + β)1/2

n1/2
(2.9)

where C is a universal constant.

In fact, one would expect that Lij ' u∗ for all i < j, if the equation

ψ(u) := ϕ(u)2 − u = 0 (2.10)

has a unique solution u∗ in [0, 1]. The intuition behind is as follows. Define Lmax =
maxi,j Lij and Lmin = mini,j Lij . It is easy to see that ϕ is an increasing function. Hence
from the mean-field equations (2.8) we have Lmax ≤ ϕ(Lmax)2 + o(1) or ψ(Lmax) ≥ o(1).
But ψ(u) ≥ 0 iff u ≤ u∗. Hence Lmax ≤ u∗ + o(1). Similarly we have Lmin ≥ u∗ − o(1) and
thus all Lij ' u∗. Lemma 2.3.8 formalizes this idea. Here we mention that one can easily
check that equation (2.10) has at most three solutions. Moreover, ψ(0) > 0 > ψ(1) implies
that ψ′(u∗) ≤ 0 or 2ϕ(u∗)ϕ′(u∗) ≤ 1 if u∗ is the unique solution to (2.10).

Lemma 2.3.8. Let u∗ be the unique solution of the equation u = ϕ(u)2. Assume that
2ϕ(u∗)ϕ′(u∗) < 1. Then for each 1 ≤ i < j ≤ n, we have

E |Lij − u∗| ≤
K(β, h)

n1/2

where K(β, h) is a constant depending only on β, h. Moreover, if 2ϕ(u∗)ϕ′(u∗) = 1 then we
have

E |Lij − u∗| ≤
K(β, h)

n1/6
for all 1 ≤ i < j ≤ n.

Now observe that the Hamiltonian H(X) can be written as

H(X) =
β

6

∑
1≤i<j≤n

XijLij + h
∑

1≤i<j≤n
Xij .

The idea then is the following: once we know that the conclusion of Lemma 2.3.8 holds,
each Lij in the above Hamiltonian can be replaced by u∗, which results in a model where
the coordinates are independent. The resulting probability measure is presumably quite
different from the original measure, but somehow the partition functions remain comparable.

The following lemma (Lemma 2.3.9) characterizes the region S ∈ R× [0,∞) such
that the equation u = ϕ(u)2 has a unique solution u∗ in [0, 1] and 2ϕ(u∗)ϕ′(u∗) < 1 for
(h, β) ∈ S (see figure 2.3).

Let h0 = log 2 − 3
2 < 0. For h < h0 there exist exactly two solutions 0 < a∗ =

a∗(h) < 1/2 < a∗ = a∗(h) <∞ to the equation

log x+
1 + x

2x
+ h = 0.

Define a∗(h) = a∗(h) = 1/2 for h = h0 and

β∗(h) =
(1 + a∗)

3

2a∗
and β∗(h) =

(1 + a∗)3

2a∗
(2.11)

for h ≤ h0.
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Lemma 2.3.9 (Characterization of high temperature regime). Let S be the set of pairs
(h, β) for which the function ψ(u) := ϕ(u)2−u has a unique root u∗ in [0, 1] and 2ϕ(u∗)ϕ′(u∗) <
1 where ϕ(u) := eβu+h/(1 + eβu+h). Then we have

Sc = {(h, β) : h ≤ h0 and β∗(h) ≤ β ≤ β∗(h)}

where β∗, β∗ are as given in equation (2.11). In particular, (h, β) ∈ S if β ≤ (3/2)3 or
h > h0.

Figure 2.3: The set S of (h, β) for which the conditions of Theorem 2.3.5 hold.

Remark. The point h = h0, β = β0 := (3/2)3 is the critical point and the curve

γ(t) =

(
− log t− 1 + t

2t
,
(1 + t)3

2t

)
(2.12)

for t > 0 is the phase transition curve. It corresponds to ψ(u∗) = 0 and 2ψ(u∗)ψ′(u∗) = 1.
In fact, at the critical point (h0, β0) the function ψ(u) = ϕ(u)2 − u has a unique root of
order three at u∗ = 4/9, i.e., ψ(u∗) = ψ′(u∗) = ψ′′(u∗) = 0 and ψ′′′(u∗) < 0. The second
part of lemma 2.3.8 shows that all the above conclusions (including the limiting free energy
result) are true for the critical point but with an error rate of n−1/6. Define the “energy”
function

e(r) =
1

2
I(r, ϕ(0)) +

1

2
log(1− ϕ(0))− βr3

6

appearing in of the r.h.s. of equation (2.7). The “high temperature” regime corresponds to
the case when e(·) has a unique minima and no local maxima or saddle point. The critical
point corresponds to the case when e(·) has a non-quadratic global minima. The boundary
corresponds to the case when e(·) has a unique minima and a saddle point. In the “low
temperature” regime e(·) has two local minima. In fact, one can easily check that there is a
one dimensional curve inside the set Sc, starting from the critical point, on which e(·) has
two global minima and outside one global minima. Below we provide the solution on the
boundary curve. Unfortunately, as of now, we don’t have a rigorous solution in the “low
temperature” regime.
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For (h, β) on the phase transition boundary curve (excluding the critical point)
the function ψ(·) has two roots and one of them, say v∗, is an inflection point. Let u∗ be the
other root. Here we mention that u∗ is a minima of e(·) while v∗ is a saddle point of e(·). On
the lower part of the boundary, which corresponds to {γ(t) : t < 1/2}, the inflection point
v∗ = (1 + t)−2 is larger than u∗, while on the upper part of the boundary corresponding to
{γ(t) : t > 1/2}, the inflection point v∗ = (1+ t)−2 is smaller than u∗. The following lemma
“solves” the model at the boundary point γ(t) (see eqn. 2.12).

Lemma 2.3.10. Let γ(·), u∗, v∗ be as above and (h, β) = γ(t) for some t 6= 1/2. Then, for
each 1 ≤ i < j ≤ n, we have

E(|Lij − u∗|) ≤
K(β, h)

n1/2
(2.13)

for some constant K(β, h) depending on β, h. Moreover, we have

logZn(β, h)

n2
= −1

2
I(ϕ(u∗), ϕ(0))− 1

2
log(1− ϕ(0)) +

βϕ(u∗)3

6
+O(n−1/2)

and

P

(∣∣∣∣Tn(Y)−
(
n

3

)
ϕ(u∗)3

∣∣∣∣ ≤ C(β, h)n5/2

)
= exp

(
−n

2I(ϕ(u∗), ϕ(0))

2
(1 +O(n−1/2))

)
, (2.14)

where Y = ((Yij))i<j follows G(n, ϕ(0)) and the constant appearing in O(·) and C(β, h)
depend only on β, h.

In the next subsection we will briefly discuss about the results for general subgraph
counts that can be proved using similar ideas.

2.3.3 General subgraph counts

Let F = (V (F ), E(F )) be a fixed finite graph on vF := |V (F )| many vertices with
eF := |E(F )| many edges. Without loss of generality we will assume that V (F ) = [vF ] :=
{1, 2, . . . ,vF }. Let αF = |Aut(F )| be the number of graph automorphism of the graph F .
Let Nn be the number of copies of F , not necessarily induced, in the Erdős-Rényi random
graph G(n, p) (so the number of 2-stars in a triangle will be three). We have the following
result about the large deviation rate function for the random variable Nn.

Theorem 2.3.11. Let Nn be the number of copies of F in G(n, p), where

p > p0 :=
eF − 1

eF − 1 + exp
(

eF
eF−1

) .
Then for any r ∈ (p, 1],

P

(
Nn ≥

vF !

αF

(
n

vF

)
reF
)

= exp

(
−n

2I(r, p)

2
(1 +O(n−1/2))

)
. (2.15)
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Moreover, even if p ≤ p0, there exist p′, p′′ such that p < p′ ≤ p′′ < 1 and the same result
holds for all r ∈ (p, p′) ∪ (p′′, 1]. For all p and r in the above domains, we also have the
more precise estimate

P

(∣∣∣∣Nn −
vF !

αF

(
n

vF

)
reF
∣∣∣∣ ≤ C(p, r)nvF−1/2

)
= exp

(
−n

2I(r, p)

2
(1 +O(n−1/2))

)
,

where C(p, r) is a constant depending on p and r.

Note that p0 as a function of eF is increasing and converges to 1 as number of
edges goes to infinity (see Figure 2.4). So there is an obvious gap in the large deviation
result, namely the proof does not work when r ≥ p, p ≤ p0 and the gap becomes larger as
the number of edges in F increases. Note that p0 → 1 as eF →∞.

Figure 2.4: The curve p0(eF ) above which our large deviation result holds.

The proof of Theorem 2.3.11 uses the same arguments that were used in the
triangle case. Here the tilted measure leads to an exponential random graph model where
the Hamiltonian depends on number of copies of F in the random graph. Let β ≥ 0, h ∈ R
be two fixed numbers. As before we will identify elements of Ω := {0, 1}(

n
2) with undirected

graphs on a set of n vertices. For each x ∈ Ω, let N(x) denote the number of copies of
F in the graph defined by x, and let E(x) =

∑
i<j xij denote the number of edges. Let

X = (Xij)1≤i<j≤n be a random element of Ω following the probability measure proportional
to eH(x), where H is the Hamiltonian

H(x) =
β

(n− 2)vF−2
N(x) + hE(x).

where (n)m = n!
(n−m)! . Recall that vF is the number of vertices in the graph F . The scaling

was done to make the two summands comparable. Also we used (n− 2)vF−2 instead of nvF

to make calculations simpler. Let Zn(β, h) be the partition function. Note that N(x) can
be written as

N(x) =
1

αF

∑
1≤t1,t2,...,tvF≤n,
ti 6=tj for i 6=j

∏
(i,j)∈E(F )

xtitj . (2.16)
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For x ∈ Ω, 1 ≤ i < j ≤ n, define x1
(i,j) as the element of Ω which is same as x in every

coordinate except for the (i, j)-th coordinate where the value is 1. Similarly define x0
(i,j).

For i < j, define the random variable

Lij :=
N(X1

(i,j))−N(X0
(i,j))

(n− 2)vF−2
.

The main idea is as in the triangle case. We show that Lij ’s satisfy a system of “mean-field
equations” similar to (2.8) which has a unique solution under the condition of Theorem
2.3.12. In fact, we will show that Lij“ ≈ ”u∗ for all i < j and E(X)“ ≈ ”

(
n
2

)
ϕ(u∗) under

the condition of Theorem 2.3.12. Now note that we can write the hamiltonian as

H(X) =
β

eF

∑
i<j

XijLij + h
∑
i<j

Xij

which is approximately equal to h∗E(X) where h∗ = h+ βu∗/eF . Now the remaining is a
calculus exercise.

So the first step in proving the large deviation bound is the following theorem,
which gives the limiting free energy in the “high temperature” regime. Note the similarity
with the triangle case.

Theorem 2.3.12. Suppose we have β ≥ 0, h ∈ R, and Zn(β, h) defined as above. Define
a function ϕ : [0, 1]→ R as

ϕ(x) =
eβx+h

1 + eβx+h
.

Suppose β and h are such that the equation αFu = 2eFϕ(u)eF−1 has a unique solution u∗

in [0, 1] and 2eF (eF − 1)ϕ(u∗)eF−2ϕ′(u∗) < αF . Then

lim
n→∞

logZn(β, h)

n2
= −1

2
I(ϕ(u∗), ϕ(0))− 1

2
log(1− ϕ(0)) +

βϕ(u∗)eF

αF
,

where I(·, ·) is the function defined in (2.4). Moreover, there exists a constant K(β, h) that
depends only on β and h (and not on n) such that difference between n−2 logZn(β, h) and
the limit is bounded by K(β, h)n−1/2 for all n.

Here also we can identify the region where the conditions in Theorem 2.3.12 hold.
Let

h0 = log(eF − 1)− eF
eF − 1

. (2.17)

For h < h0 there exist exactly two solutions 0 < a∗ = a∗(h) < 1/2 < a∗ = a∗(h) < ∞ of
the equation

log x+
1 + x

(eF − 1)x
+ h = 0

Define a∗(h) = a∗(h) = 1/(eF − 1) for h = h0 and

β∗(h) =
αF (1 + a∗)

eF

2eF (eF − 1)a∗
and β∗(h) =

αF (1 + a∗)eF

2eF (eF − 1)a∗
(2.18)

for h ≤ h0.



27

Lemma 2.3.13. Let S be the set of pairs (h, β) for which the function

ψ(u) := 2eFϕ(u)eF−1 − αFu

has a unique root u∗ in [0, 1] and 2eF (eF − 1)ϕ(u∗)eF−2ϕ′(u∗) < αF where ϕ(u) :=
eβu+h/(1 + eβu+h). Then we have

Sc = {(h, β) : h ≤ h0 and β∗(h) ≤ β ≤ β∗(h)}

where h0, β
∗, β∗ are as given in equations (2.17), (2.18). In particular, (h, β) ∈ S if

β ≤
αFe

eF−1
F

2(eF − 1)eF
or h > h0.

In fact Lemma 2.3.13 identifies the critical point and the phase transition curve
where the model goes from ordered phase to a disordered phase. But the results above does
not say what happens at the boundary or in the low temperature regime. However note
that the mean-field equations hold for all values of β and h.

2.3.4 Ising model on Zd

Fix any β ≥ 0, h ∈ R and an integer d ≥ 1. Also fix n ≥ 2. Let B = {1, 2, . . . , n+
1}d be a hypercube with (n + 1)d many points in the d-dimensional hypercube lattice
Zd. Let Ω be the graph obtained from B by identifying the opposite boundary points,
i.e., for x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ B we have x is identified with y if
xi − yi ∈ {−n, 0, n} for all i. This identification is known in the literature as periodic
boundary condition. Note that Ω is the d-dimensional lattice torus with linear size n. We
will write x ∼ y for x, y ∈ Ω if x, y are nearest neighbors in Ω. Also let us denote by Nx

the set of nearest neighbors of x in Ω, i.e., Nx = {y ∈ Ω : y ∼ x}.
Now consider the Gibbs measure on {+1,−1}Ω given by the following Hamiltonian

H(σ) := β
∑

x∼y,x,y∈Ω

σxσy + h
∑
x∈Ω

σx

where σ = (σx)x∈Ω is a typical element of {+1,−1}Ω. So the probability of a configuration
σ ∈ {+1,−1}Ω is

µβ,h({σ}) := Z−1
β,h exp (H(σ)) = Z−1

β,h exp

β ∑
x∼y,x,y∈Ω

σxσy + h
∑
x∈Ω

σx

 (2.19)

where Zβ,h =
∑
σ∈{+1,−1}Ω e

H(σ) is the normalizing constant. Here σx is the spin of the
magnetic particle at position x in the discrete torus Ω. This is the famous Ising model of
ferromagnetism on the box B with periodic boundary condition at inverse temperature β
and external field h.

The one-dimensional Ising model is probably the first statistical model of ferro-
magnetism to be proposed or analyzed [58]. The model exhibits no phase transition in one
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dimension. But for dimensions two and above the Ising ferromagnet undergoes a transition
from an ordered to a disordered phase as β crosses a critical value. The two dimensional
Ising model with no external field was first solved by Lars Onsager in a ground breaking
paper [89], who also calculated the critical β as βc = sinh−1(1). For dimensions three and
above the model is yet to be solved, and indeed, very few rigorous results are known.

In this subsection, we present some concentration inequalities for the Ising model
that hold for all values of β. These ‘temperature-free’ relations are analogous to the mean
field equations that we obtained for subgraph counts earlier.

The magnetization of the system, as a function of the configuration σ, is defined
as m(σ) := 1

|Ω|
∑

x∈Ω σx. For each integer k ∈ {1, 2, . . . , 2d}, define a degree k polynomial

function rk(σ) of a spin configuration σ as follows:

rk(σ) :=

((
2d

k

)
|Ω|
)−1∑

x∈Ω

∑
S⊆Nx,|S|=k

σS (2.20)

where σS =
∏
x∈S σx for any S ⊆ Ω. In particular rk(σ) is the average of the product of

spins of all possible k out of 2d neighbors. Note that r1(σ) ≡ m(σ). We will show that
when h = 0 and n is large, m(σ) and rk(σ)’s satisfy the following “mean-field relation”
with high probability under the Gibbs measure:

(1− θ0(β))m(σ) ≈
d−1∑
k=1

θk(β)r2k+1(σ). (2.21)

These relations hold for all values of β ≥ 0. Here θk’s are explicit rational functions of
tanh(2β) for k = 0, 1, . . . , d − 1, defined in equation (2.22) below. (Later we will prove in
Proposition 2.3.16 that an external magnetic field h will add an extra linear term in the
above relation (2.21).) The following Proposition makes this notion precise in terms of finite
sample tail bound. It is a simple consequence of Theorem 2.2.1.

Theorem 2.3.14. Suppose σ is drawn from the Gibbs measure µβ,0. Then, for any β ≥
0, n ≥ 1 and t ≥ 0 we have

P

(√
|Ω|

∣∣∣∣∣(1− θ0(β))m(σ)−
d−1∑
k=1

θk(β)r2k+1(σ)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

4b(β)

)

where m(σ) := 1
|Ω|
∑

x∈Ω σx is the magnetization, rk(σ) is as given in (2.20) and for k =
0, 1, . . . , d− 1

θk(β) =
1

4d

(
2d

2k + 1

) ∑
σ∈{−1,+1}2d

tanh

(
β

2d∑
i=1

σi

)
2k+1∏
j=1

σj

and b(β) = |1− θ0(β)|+
d−1∑
k=1

(2k + 1)|θk(β)|.

(2.22)
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Moreover, we can explicitly write down θ0(β) as

θ0(β) =
1

4d−1

d∑
k=1

k

(
2d

d+ k

)
tanh(2kβ)

and for d ≥ 2 there exists β1 ∈ (0,∞), depending on d, such that 1− θ0(β) > 0 for β < β1

and 1− θ0(β) < 0 for β > β1.

Here we may remark that for any fixed k, θk(β/2d) converges to the coefficient
of x2k+1 in the power series expansion of tanh(βx) and 2dβ1(d) ↓ 1 as d → ∞. For small
values of d we can explicitly calculate the θk’s. For instance, in d = 2,

θ0(β) =
1

2
(tanh(4β) + 2 tanh(2β)) , θ1(β) =

1

2
(tanh(4β)− 2 tanh(2β)) .

For d = 3,

θ0(β) =
3

16
(tanh(6β) + 4 tanh(4β) + 5 tanh(2β)) ,

θ1(β) =
10

16
(tanh(6β)− 3 tanh(2β)) ,

θ2(β) =
3

16
(tanh(6β)− 4 tanh(4β) + 5 tanh(2β)) .

For d = 4,

θ0(β) =
1

16
(tanh(8β) + 6 tanh(6β) + 14 tanh(4β) + 14 tanh(2β)) ,

θ1(β) =
7

16
(tanh(8β) + 2 tanh(6β)− 2 tanh(4β)− 6 tanh(2β)) ,

θ2(β) =
7

16
(tanh(8β)− 2 tanh(6β)− 2 tanh(4β) + 6 tanh(2β)) ,

θ3(β) =
1

16
(tanh(8β)− 6 tanh(6β) + 14 tanh(4β)− 14 tanh(2β)) .

Corollary 2.3.15. For the Ising model on Ω at inverse temperature β with no external
magnetic field for all t ≥ 0 we have,

(i) if d = 1,

P(|m(σ)| ≥ t) ≤ 2 exp

(
−1

4
|Ω|(1− tanh(2β))t2

)
(ii) if d = 2,

P(|[(1− u)2 − u3]m(σ) + u3r3(σ)| ≥ t) ≤ 2 exp

(
−|Ω|t

2

32

)
where u = tanh(2β) and r3(σ) = 1

4|Ω|
∑∗ σxσyσz where the sum

∑∗ is over all x, y, z ∈
Ω such that |x− y| = 2, |z − y| = 2, |x− z| = 2.
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(iii) if d = 3,

P(|g(u)m(σ) + 5u3(1 + u2)r3(σ)− 3u5r5(σ)| ≥ t) ≤ 2 exp
(
−c|Ω|t2

)
where c is an absolute constant, g(u) = 1− 3u+ 4u2 − 9u3 + 3u4 − 3u5, u = tanh(2β)
and r3, r5 are as defined in (2.20).

Although we do not yet know the significance of the above relations, it seems
somewhat striking that they are not affected by phase transitions. The exponential tail
bounds show that many such relations can hold simultaneously. For completeness, we state
below the corresponding result for nonzero external field.

Proposition 2.3.16. Suppose σ is drawn from the Gibbs measure µβ,h. Let rk(σ), θk(β),
b(β) be as in proposition (2.3.14). Then, for any β ≥ 0, h ∈ R, n ≥ 1 and t ≥ 0 we have

P (|(1− θ0(β))m(σ)− g(σ)| ≥ t) ≤ 2 exp

(
− |Ω|t2

4b(β)(1 + tanh |h|)

)
(2.23)

where

g(σ) :=
d−1∑
k=1

θk(β)r2k+1(σ) + tanh(h)

(
1−

d−1∑
k=0

θk(β)s2k+1(σ)

)
and

sk(σ) :=

((
2d

k

)
|Ω|
)−1∑

x∈Ω

∑
S⊆Nx,|S|=k

σS∪{x}

is the average of products of spins over all k-stars for k = 1, 2, . . . , 2d and Ω is the discrete
torus in Zd with nd many points.

2.4 Proofs

Instead of proving Theorem 2.2.2 first, let us see how it is applied to prove the
result for the Curie-Weiss model at critical temperature. The proof is simply an elaboration
of the sketch given at the end of Subsection 2.3.1.

Proof of Proposition 2.3.1. Suppose σ is drawn from the Curie-Weiss model at critical tem-
perature. We construct σ′ by taking one step in the heat-bath Glauber dynamics: A coor-
dinate I is chosen uniformly at random, and σI is replace by σ′I drawn from the conditional
distribution of the I-th coordinate given {σj : j 6= I}. Let

F (σ,σ′) :=

n∑
i=1

(σi − σ′i) = σI − σ′I .

For each i = 1, 2, . . . , n, define mi = mi(σ) = n−1
∑

j 6=i σj . An easy computaion gives that
E(σi|{σj , j 6= i}) = tanh(mi) for all i and so we have

f(σ) := E(F (σ,σ′)|σ) = m− 1

n

n∑
i=1

tanh(mi) =
m

n
+

1

n

n∑
i=1

g(mi)
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where g(x) := x − tanh(x). By definition mi(σ) − m(σ) = σi/n and mi(σ
′) − m(σ) =

(σi + σI − σ′I)/n for all i. Hence using Taylor expansion upto first degree and noting that
|g′(x)| = tanh2(x) ≤ x2 we have

|f(σ)− f(σ′)| ≤ 2

n
|g′(m(σ))|+

2 + 5 max|x|≤1 |g′′(x)|
n2

≤ 2

n
m(σ)2 +

6

n2
.

Clearly |F (σ,σ′)| ≤ 2. Thus we have

∆(σ) :=
1

2
E[|f(σ)− f(σ′)| · |F (σ,σ′)| | σ] ≤ 2

n
m(σ)2 +

6

n2
.

Now it is easy to verify that |x|3 ≤ 5|x− tanhx| for all |x| ≤ 1. Note that this is the place
where we need β = 1. For β 6= 1, the linear term dominates in m − tanh(βm). Hence it
follows that

m(σ)2 ≤ 52/3|m(σ)− tanhm(σ)|2/3 ≤ 3|f(σ)|2/3 + 3n−2/3

where in the last line we used the fact that |f(σ)− (m− tanhm)| ≤ 1/n and 52/3 < 3. Thus

∆(σ) ≤ 6

n
|f(σ)|2/3 +

12

n5/3

and using Corollary 2.2.3 with α = 2/3, B = 6/n and C = 12/n5/3 we have

P(|m− tanhm| ≥ t+ n−1) ≤ P(|f(σ)| ≥ t) ≤ 2e−cnt
4/3

for all t ≥ 0 for some constant c > 0. This clearly implies that

P(|m| ≥ t) ≤ P(|m− tanhm| ≥ t3/5) ≤ 2e−cnt
4

for all t ≥ 0 and for some absolute constant c > 0. Thus we are done. �

Proof of Proposition 2.3.3. The proof is along the lines of proof of proposition 2.3.1. Sup-
pose X is drawn from the distribution νn. We construct X′ as follows: a coordinate I is
chosen uniformly at random, and XI is replace by X ′I drawn from the conditional distribu-
tion of the I-th coordinate given {Xj : j 6= I}. Let

F (X,X′) :=

n∑
i=1

(Xi −X ′i) = XI −X ′I .

For each i = 1, 2, . . . , n, define mi(X) = n−1
∑

j 6=iXj . An easy computaion gives that

E(Xi|{Xj , j 6= i}) = g(mi) for all i = 1, 2, . . . , n where g(s) = d
ds(log

∫
exp(x2/2n +

sx) dρ(x)) for s ∈ R. So we have

f(X) := E(F (X,X′)|X) = m(X)− 1

n

n∑
i=1

g(mi(X)).
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Define the function

h(s) =
s2

2
− log

∫
exp(sx) dρ(x) for s ∈ R. (2.24)

Clearly h is an even function. Recall that k is an integer such that h(i)(0) = 0 for 0 ≤ i < 2k
and h(2k)(0) 6= 0. We have k ≥ 2 since h′′(0) = 1−

∫
x2 dρ(x) = 0.

Now using the fact that ρ([−L,L]) = 1 it is easy to see that |f(X)− h′(m(X))| ≤
c/n for some constant c depending on L only. In the subsequent calculations c will always
denote a constant depending only on L that may vary from line to line. Similarly we have

|f(X)− f(X′)| ≤
|XI −X ′I |

n

(
|1− g′(m(X))|+

c(1 + sup|x|≤L |g′′(x)|)
n

)
≤ 2L

n
|h′′(m(X))|+ c

n2
.

Note that |h′′(s)| ≤ cs2k−2 for some constant c for all s ≥ 0. This follows since lims→0 h
′′(s)/s2k−2

exists and h′′(·) is a bounded function. Also lims→0 |h′(s)|/|s|2k−1 = |h(2k)(0)| 6= 0 and
|h′(s)| > 0 for s > 0. So we have |h′(s)| ≥ c|s|2k−1 for some constant c > 0 and all |s| ≤ L.
From the above results we deduce that

|f(X)− f(X′)| ≤ c

n
|(m(X))|2k−2 +

c

n2
≤ c

n
|h′(m(X))|

2k−2
2k−1 +

c

n2

≤ c

n
|f(X)|

2k−2
2k−1 +

c

n2−1/(2k−1)
.

Now the rest of the proof follows exactly as for the classical Curie-Weiss model. �

2.4.1 Proof of the large deviation result for triangles

First, let us state and prove a simple technical lemma.

Lemma 2.4.1. Let x1, . . . , xk, y1, . . . , yk be real numbers. Then

max
1≤i≤n

∣∣∣∣ exi∑k
j=1 e

xj
− eyi∑k

j=1 e
yj

∣∣∣∣ ≤ 2 max
1≤i≤n

|xi − yi|.

and ∣∣∣∣log

k∑
i=1

exi − log

k∑
i=1

eyi
∣∣∣∣ ≤ max

1≤i≤k
|xi − yi|.

Proof. Fix 1 ≤ i ≤ k. For t ∈ [0, 1], let

h(t) =
etxi+(1−t)yi∑k
j=1 e

txj+(1−t)yj
.

Then

h′(t) =

[
(xi − yi)−

∑k
j=1(xj − yj)etxj+(1−t)yj∑k

j=1 e
txj+(1−t)yj

]
h(t).

This shows that |h′(t)| ≤ 2 maxi |xi−yi| for all t ∈ [0, 1] and completes the proof of the first
assertion. The second inequality is proved similarly. �
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Proof of Lemma 2.3.7. Fix two numbers 1 ≤ i < j ≤ n. Given a configuration X, con-
struct another configuration X′ as follows. Choose a point k ∈ {1, . . . , n}\{i, j} uniformly
at random, and replace the pair (Xik, Xjk) with (X ′ik, X

′
jk) drawn from the conditional dis-

tribution given the rest of the edges. Let L′ij be the revised value of Lij . From the form of
the Hamiltonian it is now easy to read off that for x, y ∈ {0, 1},

P(X ′ik = x,X ′jk = y | X)

∝ exp

(
βxLik + βyLjk + hx+ hy − β

n
xXijXjk −

β

n
yXijXik +

β

n
xyXij

)
.

An application of Lemma 2.4.1 shows that the terms having β/n as coefficient can be
‘ignored’ in the sense that for each x, y ∈ {0, 1},∣∣∣∣P(X ′ik = x,X ′jk = y | X)− eβxLik+βyLjk+hx+hy

(1 + eβLik+h)(1 + eβLjk+h)

∣∣∣∣ ≤ 2β

n

In particular,

|E(X ′ikX
′
jk | X)− ϕ(Lik)ϕ(Ljk)| ≤

2β

n
. (2.25)

Now,

E(Lij − L′ij | X) =
1

n(n− 2)

∑
k 6∈{i,j}

(XikXjk − E(X ′ikX
′
jk | X))

=
1

n− 2
Lij −

1

n(n− 2)

∑
k 6∈{i,j}

E(X ′ikX
′
jk | X).

(2.26)

Let F (X,X′) = (n− 2)(Lij − L′ij) and f(X) = E(F (X,X′) | X). Let

g(X) = Lij −
1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk).

From (2.25) and (2.26) it follows that

|f(X)− g(X)| ≤ 2β

n
. (2.27)

Since X ′ has the same distribution as X, the same bound holds for |f(X ′)− g(X ′)| as well.
Now clearly, |F (X,X ′)| ≤ 1. Again, |g(X)− g(X ′)| ≤ 2/n, and therefore

|f(X)− f(X ′)| ≤ 4(1 + β)

n
.

Combining everything, and applying Theorem 2.2.1 with B = 0 and C = 2(1 + β)/n, we
get

P(|f(X)| ≥ t) ≤ 2 exp

(
− nt2

4(1 + β)

)
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for all t ≥ 0. From (2.27) it follows that

P(|g(X)| ≥ t) ≤ P(|f(X)| ≥ t− 2β/n) ≤ 2 exp

(
− nt2

8(1 + β)

)
for all t ≥ 8β/n. This completes the proof of the tail bound. The bound on the mean
absolute value is an easy consequence of the tail bound. �

Proof of Lemma 2.3.8. The proof is in two steps. In the first step we will get an error
bound of order n−1/2

√
log n. In the second step we will improve it to n−1/2. Define

∆ = max
1≤i<j≤n

∣∣∣∣Lij − 1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk)

∣∣∣∣.
By Lemma 2.3.7 and union bound we have

P (∆ ≥ t) ≤ n2 exp

(
− nt2

8(1 + β)

)
for all t ≥ 8β/n. Intuitively the above equation says that ∆ is of the order of

√
log n/n, in

fact we have E(∆2) = O(log n/n). Clearly ϕ is an increasing function. Hence we have

ϕ(Lmin)2 −∆ ≤ Lmin ≤ Lmax ≤ ϕ(Lmax)2 + ∆

where Lmax = max1≤i<j≤n Lij and Lmin = min1≤i<j≤n Lij .
Now assume that there exists a unique solution u∗ of the equation ϕ(u)2 = u with

2ϕ(u∗)ϕ′(u∗) < 1. For ease of notations, define the function ψ(u) = ϕ(u)2 − u. We have
ψ(0) > 0 > ψ(1), u∗ is the unique solution to ψ(u) = 0 and ψ′(u∗) < 0. It is easy to see
that ψ′(u) = 0 has at most three solution (ψ′(u) = 2βϕ(u)2(1− ϕ(u))− 1 is a third degree
polynomial in ϕ(u) and ϕ is a strictly increasing function).

Hence there exist positive real numbers ε, δ such that |ψ(u)| > ε if |u − u∗| > δ.
Note that ψ(u) > 0 if u < u∗ and ψ(u) < 0 is u > u∗. Decreasing ε, δ without loss of
generality we can assume that

inf
0<|u−u∗|≤δ

[
u− u∗

−ψ(u)

]
= c > 0. (2.28)

This is possible because ψ′(u∗) < 0. Note that ψ(Lmax) ≥ −∆ and ψ(Lmin) ≤ ∆. Thus we
have

u∗ − δ ≤ Lmin ≤ Lmax ≤ u∗ + δ

when ∆ < ε. Using (2.28), u∗ ≤ Lmax ≤ u∗+ δ implies that |Lmax− u∗| ≤ c∆ and u∗− δ ≤
Lmin ≤ u∗ implies that |Lmin − u∗| ≤ c∆. Thus, when ∆ < ε, we have |Lmax − u∗| ≤ c∆
and |Lmin − u∗| ≤ c∆ and in particular, |Lij − u∗| ≤ c∆ for all i < j. So we can bound the
L2 distance of Lij from u∗ by

E(Lij − u∗)2 ≤ c2E(∆2) + P(∆ ≥ ε) ≤ K(β, h)
log n

n
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for all i < j.
Now let us move to the second step. Recall from (2.9) that

E

∣∣∣∣Lij − 1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk)

∣∣∣∣ ≤ C(1 + β)1/2

n1/2
(2.29)

for all i < j. Let Dij = Lij − u∗. Using Taylor expansion around u∗ upto degree one we
have

ϕ(Lik)ϕ(Ljk)− ϕ(u∗)2 = ϕ(u∗)(ϕ(Lik)− ϕ(u∗)) + ϕ(u∗)(ϕ(Ljk)− ϕ(u∗))

+ (ϕ(Lik)− ϕ(u∗))(ϕ(Ljk)− ϕ(u∗))

= ϕ(u∗)ϕ′(u∗)(Dik +Djk) +Rijk

where E(|Rijk|) ≤ C E(D2
ij) ≤ Cn−1 log n for some constant C depending only on β, h.

Thus

E

∣∣∣∣Lij− 1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk)−Dij +
ϕ(u∗)ϕ′(u∗)

n

∑
k 6∈{i,j}

(Dik +Djk)

∣∣∣∣
≤ 2u∗

n
+

1

n

∑
k 6∈{i,j}

E |Rijk| ≤
C log n

n
.

(2.30)

Here we used the fact that u∗ = ϕ(u∗)2. Combining (2.29) and (2.30) we have

E

∣∣∣∣Dij −
ϕ(u∗)ϕ′(u∗)

n

∑
k 6∈{i,j}

(Dik +Djk)

∣∣∣∣ ≤ C√
n

for all i < j. By symmetry, E |Dij | is the same for all i, j. Thus finally we have

E |Lij − u∗| = E |Dij | ≤
1

1− 2ϕ(u∗)ϕ′(u∗)
· C√

n
=
K(β, h)√

n

where K(β, h) is a constant depending on β, h.
When ψ(u) = 0 has a unique solution at u = u∗ with 2ψ(u∗)ψ′(u∗) = 1, which

happens at the critical point β = (3/2)3, h = log 2− 3/2, instead of equation (2.28) we have

inf
0<|u−u∗|≤δ

[
(u− u∗)3

−ψ(u)

]
= c > 0

since ψ(u∗) = ψ′(u∗) = ψ′′(u∗) = 0 and ψ′′′(u∗) < 0. Then using a similar idea as above
one can easily show that

E |Lij − u∗| ≤ K(β, h)n−1/6

for some constant K depending on β, h. This completes the proof of the Lemma. �

Remark. The proof becomes lot easier if we have

c := ϕ(1) · sup
0≤x≤1

|ϕ(x)− ϕ(u∗)|
|x− u∗|

<
1

2
. (2.31)
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This is because, by the triangle inequality we have∑
i<j

|Lij − u∗| ≤
∑
i<j

∣∣∣∣Lij − 1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk)

∣∣∣∣
+
∑
i<j

(
1

n

∑
k 6∈{i,j}

∣∣ϕ(Lik)ϕ(Ljk)− u∗
∣∣+

2u∗

n

)
.

(2.32)

Now recall that condition (2.31) says that ϕ(1)|ϕ(x)− ϕ(u∗)| ≤ c|x − u∗| for all x ∈ [0, 1].
Moreover Lij ∈ [0, 1] for all i, j, and u∗ = ϕ(u∗)2. Thus,∣∣ϕ(Lik)ϕ(Ljk)− u∗

∣∣ ≤ c|Lik − u∗|+ c|Ljk − u∗|.

Combining everything we get∑
i<j

|Lij − u∗| ≤
∑

i<j

∣∣Lij − 1
n

∑
k 6∈{i,j} ϕ(Lik)ϕ(Ljk)

∣∣+ nu∗

1− 2c
.

Taking expectation on both sides, and applying Lemma 2.3.7, we get∑
i<j

E |Lij − u∗| ≤
C(1 + β)n3/2

1− 2c
.

And this gives the required result. In fact using basic calculus results one can easily check
that condition (2.31) is satisfied when h ≥ 0 or β ≤ 2.

Now we will prove that in the exponential random graph model, the number of
edges and number of triangles also satisfy certain ‘mean-field’ relations.

Lemma 2.4.2. Recall that E(x) and T (x) denote the number of edges and number of
triangles in the graph defined by the edge configuration x ∈ Ω. If X is drawn from the
Gibbs’ measure in Theorem 2.3.5, we have the bound

E

∣∣∣∣E(X)−
∑
i<j

ϕ(Lij)

∣∣∣∣ ≤ C(1 + β)1/2n

E

∣∣∣∣T (X)

n
− 1

3

∑
i<j

Lijϕ(Lij)

∣∣∣∣ ≤ C(1 + β)1/2n

where and C is a universal constant.

Proof. It is not difficult to see that

E(Xij | (Xkl)(k,l)6=(i,j)) = ϕ(Lij).

Let us create X′ by choosing 1 ≤ i < j ≤ n uniformly at random and replacing Xij with
X ′ij drawn from the conditional distribution of Xij given (Xkl)(k,l)6=(i,j). Let F (X,X′) =(
n
2

)
(Xij −X ′ij). Then

f(X) = E(F (X,X′)|X) =
∑
k<l

(Xkl − ϕ(Lkl)) = E(X)−
∑
k<l

ϕ(Lkl).
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Now |F (X,X′)| ≤
(
n
2

)
and |f(X)−f(X′)| ≤ 1+β. Here we used the fact that |ϕ′(x)| ≤ β/4.

Combining the above result and Theorem 2.2.1 with B = 0, C = 1
2(1 + β)

(
n
2

)
, we get the

required bound.
Similarly, if we define F (X,X′) =

(
n
2

)
(XijLij −X ′ijLij). Then

f(X) = E(F (X,X′)|X) =
∑
k<l

(XklLkl − ϕ(Lkl)Lkl)

=
3

n
T (X)−

∑
k<l

ϕ(Lkl)Lkl.

Again, |F (X,X′)| ≤
(
n
2

)
and |f(X)−f(X′)| ≤ C(1+β). The bound follows easily as before.

�

The following result is an easy corollary of Lemma 2.3.8 and Lemma 2.4.2.

Corollary 2.4.3. Suppose the conditions of Theorem 2.3.5 are satisfied. Then we have

E

∣∣∣∣E(X)− n2ϕ(u∗)

2

∣∣∣∣ ≤ Cn3/2 and E

∣∣∣∣T (X)

n
− n2ϕ(u∗)3

6

∣∣∣∣ ≤ Cn3/2

where C is a constant depending only on β, h.

Lemma 2.4.4. Suppose the conditions of Theorem 2.3.5 are satisfied. Let Tn be the num-
ber of triangles in the Erdős-Rényi graph G(n, ϕ(0)). Then there is a constant K(β, h)
depending only on β and h such that for all n∣∣∣∣ logP(|Tn −

(
n
3

)
ϕ(u∗)3| ≤ K(β, h)n5/2)

n2
− −I(ϕ(u∗), ϕ(0))

2

∣∣∣∣ ≤ K(β, h)√
n

.

Proof. Let X be drawn from the Gibbs’ measure in Theorem 2.3.5 with parameters β, h.
From corollary 2.4.3 we see that there exists a constant K(β, h) such that (for all n)

P

(∣∣∣∣E(X)− n2ϕ(u∗)

2

∣∣∣∣ ≤ K(β, h)n3/2

)
≥ 3

4

and

P

(∣∣∣∣T (X)

n
− n2ϕ(u∗)3

6

∣∣∣∣ ≤ K(β, h)n3/2

)
≥ 3

4
.

Now let

A =

{
x ∈ {0, 1}n :

∣∣∣∣T (x)

n
− n2ϕ(u∗)3

6

∣∣∣∣ ≤ K(β, h)n3/2

}
and

B = A ∩
{
x ∈ {0, 1}n :

∣∣∣∣E(x)− n2ϕ(u∗)

2

∣∣∣∣ ≤ K(β, h)n3/2

}
.

Now suppose Y = (Yij)1≤i<j≤n is a collection of i.i.d. random variables satisfying P(Yij =
1) = 1 − P(Yij = 0) = ϕ(0) and Z = (Zij)1≤i<j≤n is another collection of i.i.d. random
variables with P(Zij = 1) = 1 − P(Zij = 0) = ϕ(u∗). Without loss of generality we can
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assume that K(β, h) was chosen large enough to ensure that (again, for all n) P(Z ∈ A) ≥
1/2 and P(Z ∈ B) ≥ 1/2. Now, it follows directly from the definition of A and Lemma
2.4.1 that ∣∣∣∣log

∑
x∈A

ehE(x) − log
∑
x∈A

e
βT (x)
n

+hE(x) +
βn2ϕ(u∗)3

6

∣∣∣∣
=

∣∣∣∣log
∑
x∈A

ehE(x)+
βn2ϕ(u∗)3

6 − log
∑
x∈A

e
βT (x)
n

+hE(x)

∣∣∣∣ (2.33)

≤ βmax
x∈A

∣∣∣∣T (x)

n
− n2ϕ(u∗)3

6

∣∣∣∣ ≤ βK(β, h)n3/2.

Next, observe that ∣∣∣∣log
∑
x∈A

e
βT (x)
n

+hE(x) − log
∑
x∈Ω

e
βT (x)
n

+hE(x)

∣∣∣∣
= | logP(X ∈ A)| ≤ | log(3/4)|.

(2.34)

Similarly we have ∣∣∣∣log
∑
x∈B

e
βT (x)
n

+hE(x) − log
∑
x∈Ω

e
βT (x)
n

+hE(x)

∣∣∣∣
= | logP(X ∈ B)| ≤ | log(1/2)|

(2.35)

where we used the fact that P(X ∈ A ∩ C) ≥ P(X ∈ A) + P(X ∈ C) − 1. Combining the
last two inequalities, we get∣∣∣∣log

∑
x∈A

e
βT (x)
n

+hE(x) − log
∑
x∈B

e
βT (x)
n

+hE(x)

∣∣∣∣ ≤ log(8/3). (2.36)

Next, note that by the definition of B and Lemma 2.4.1, we have that for any h′,∣∣∣∣log
∑
x∈B

e
βT (x)
n

+hE(x) − n2(h− h′)ϕ(u∗)

2
− βn2ϕ(u∗)3

6
− log

∑
x∈B

eh
′E(x)

∣∣∣∣
≤ sup

x∈B

∣∣∣∣βT (x)

n
+ hE(x)− n2(h− h′)ϕ(u∗)

2
− βn2ϕ(u∗)3

6
− h′E(x)

∣∣∣∣
≤ (β + |h− h′|)K(β, h)n3/2.

(2.37)

Now choose h′ = log ϕ(u∗)
1−ϕ(u∗) . Then∣∣∣∣log
∑
x∈B

eh
′E(x) − log

∑
x∈Ω

eh
′E(x)

∣∣∣∣ = | logP(Z ∈ B)| ≤ log 2. (2.38)

Adding up (2.33), (2.36), (2.37), and (2.38), and using the triangle inequality, we get∣∣∣∣log
∑
x∈A

ehE(x) − n2(h− h′)ϕ(u∗)

2
− log

∑
x∈Ω

eh
′E(x)

∣∣∣∣ ≤ K ′(β, h)n3/2 (2.39)
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where K ′(β, h) is a constant depending only on β, h. For any s ∈ R, a trivial verification
shows that

log
∑
x∈Ω

esE(x) =

(
n

2

)
log(1 + es).

Again, note that logP(Y ∈ A) = log
∑

x∈A e
hE(x) − log

∑
x∈Ω e

hE(x). Therefore it follows
from inequality (2.39) that∣∣∣∣ logP(Y ∈ A)

n2
− (h− h′)ϕ(u∗) + log(1 + eh

′
)− log(1 + eh)

2

∣∣∣∣ ≤ K ′(β, h)√
n

.

Now h = log ϕ(0)
1−ϕ(0) and h′ = log ϕ(u∗)

1−ϕ(u∗) . Also, log(1 + eh) = − log(1 − ϕ(0)) and log(1 +

eh
′
) = − log(1− ϕ(u∗)). Substituting these in the above expression, we get∣∣∣∣ logP(Y ∈ A)

n2
− −I(ϕ(u∗), ϕ(0))

2

∣∣∣∣ ≤ K ′(β, h)√
n

.

This completes the proof of the Lemma. �

We are now ready to finish the proof of Theorem 2.3.5.

Proof of Theorem 2.3.5. Note that by adding the terms in (2.35), (2.37), and (2.38) from
the proof of Lemma 2.4.4, and applying the triangle inequality, we get∣∣∣∣ logZn(β, h)

n2
− (h− h′)ϕ(u)

2
− βϕ(u)3

6
− 1

2
log(1 + eh

′
)

∣∣∣∣ ≤ K(β, h)√
n

.

This can be rewritten as∣∣∣∣ logZn(β, h)

n2
+
I(ϕ(u), ϕ(0)) + log(1− ϕ(0))

2
− βϕ(u)3

6

∣∣∣∣ ≤ K(β, h)√
n

.

This completes the proof of Theorem 2.3.5. �

Note that the proof of Theorem 2.3.5 contains a proof for the lower bound in the
general case. We provide the proof below for completeness.

Proof of Lemma 2.3.6. Fix any r ∈ (0, 1). Define the set Br as

Br =

{
x ∈ {0, 1}n :

∣∣∣∣T (x)

n
− n2r3

6

∣∣∣∣ ≤ K(r)n3/2,

∣∣∣∣E(x)− n2r

2

∣∣∣∣ ≤ K(r)n3/2

}
where K(r) is chosen in such a way that P(Z ∈ Br) ≥ 1/2 where Z = ((Zij))i<j and Zij ’s
are i.i.d. Bernoulli(r). From the proof of Lemma 2.4.4 it is easy to see that∣∣∣∣log

∑
x∈Br

e
βT (x)
n

+hE(x) − n2

2

(
(h− h′)r +

βr3

3
+ log(1 + eh

′
)

)∣∣∣∣ ≤ K ′n3/2
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where h′ = log r
1−r and K ′ is a constant depending on β, h, r. Simplifying we have

2

n2
logZn(β, h) ≥ 2

n2
log

∑
x∈Br

e
βT (x)
n

+hE(x)

≥ βr3

3
+ log(1− p)− I(r, p)− K ′√

n
(2.40)

for all r where p = eh/(1 + eh). Now taking limit as n→∞ and maximizing over r we have
the first inequality (2.7). Given β, h, define the function

f(r) =
βr3

3
+ log(1− p)− I(r, p)

where p = eh/(1 + eh). One can easily check that f ′(r) T 0 iff ϕ(u)2 − u T 0 for u = r2.
From this fact the second equality follows. �

Lemma 2.4.5. Let Tn be the number of triangles in the Erdős-Rényi graph G(n, ϕ(0)).
Then there is a constant K(β, h) depending only on β and h such that for all n

logP(Tn ≥
(
n
3

)
ϕ(u∗)3)

n2
≤ −I(ϕ(u∗), ϕ(0))

2
+
K(β, h)√

n
.

Proof. By Markov’s inequality, we have

logP(Tn ≥
(
n
3

)
ϕ(u∗)3)

n2
≤ − β

n3

(
n

3

)
ϕ(u∗)3 +

E(eβTn/n)

n2
.

From the last part of Theorem 2.3.5, it is easy to obtain an optimal upper bound of the
second term on the right hand side, which finishes the proof of the Lemma. �

Proof of Theorem 2.3.4. Given p and r, if for all r′ belonging to a small neighborhood of
r there exist β and h satisfying the conditions of Theorem 2.3.5 such that ϕ(0) = p and
ϕ(u∗) = r′, then a combination of Lemma 2.4.4 and Lemma 2.4.5 implies the conclusion of
Theorem 2.3.4. If p ≥ p0 = 2/(2+e3/2), we can just choose h ≥ h0 = − log 2−3/2 such that
p = eh/(1 + eh) and conclude, from Theorem 2.3.5, Lemma 2.4.4 and Lemma 2.3.9, that
the large deviations limit holds for any β ≥ 0. Varying β between 0 and ∞, it is possible
to get for any r ≥ p a β such that ϕ(u∗) = r.

For p ≤ p0, we again choose h such that ϕ(0) = p. Note that h ≤ h0. The
large deviations limit should hold for any r ≥ p for which there exists β > 0 such that
r = ϕ(u∗) =

√
u∗ and (h, β) ∈ S. It is not difficult to verify that given h, u∗ is a continuously

increasing function of β in the regime for which (h, β) ∈ S. Recall the settings of Lemma
2.3.9. Thus, the values of r that is allowed is in the set (p, p∗)∪ (p∗, 1], where p∗, p∗ are the
unique non-touching solutions to the equations√

p∗ =
eβ∗(h)p∗+h

1 + eβ∗(h)p∗+h
,
√
p∗ =

eβ
∗(h)p∗+h

1 + eβ∗(h)p∗+h
.

This completes the proof of Theorem 2.3.4. �
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Finally, let us round up by proving Lemma 2.3.9.

Proof of Lemma 2.3.9. Fix h ∈ R. Define the function

ψ(x;h, β) := ϕ(x;h, β)2 − x

where

ϕ(x;h, β) =
eβx+h

1 + eβx+h
for x ∈ [0, 1].

For simplicity, we will omit β, h in ϕ(x;β, h) and ψ(x;β, h) when there is no chance of
confusion. Note that ψ(0) > 0 > ψ(1). Hence the equation ϕ(x;β, h) = 0 has at least one
solution. Also we have ψ′(x) = 2βϕ(x)2(1 − ϕ(x)) − 1 and ϕ is strictly increasing. Hence
the equation ψ′(x) = 0 has at most three solutions. So either the function ψ is strictly
decreasing or there exist two numbers 0 < a < b < 1 such that ψ is strictly decreasing in
[0, a] ∪ [b, 1] and strictly increasing in [a, b]. From the above observations it is easy to see
that the equation ψ(x) = 0 has at most three solutions for any β, h. If ψ(x) = 0 has exactly
two solutions then ψ′ = 0 at one of the solution.

Let u∗ = u∗(h, β) and u∗ = u∗(h, β) be the smallest and largest solutions of
ψ(x;h, β) = 0 respectively. If u∗ = u∗ we have a unique solution of ψ(x) = 0. From the fact
that ∂

∂βψ(x;h, β) > 0 for all x ∈ [0, 1], β ≥ 0, h ∈ R we can deduce that given h, u∗(h, β)
and u∗(h, β) are increasing functions of β. Note that u∗ is left continuous and u∗ is right
continuous in β given h. Also note that given h ∈ R, u∗ = u∗ if β > 0 is very small or very
large. So we can define β∗(h) and β∗(h) such that for β < β∗(h) and for β > β∗(h) we have
u∗(h, β) = u∗(h, β). β∗ is the largest and β∗ is the smallest such number.

Therefore, we can deduce that at β = β∗(h), β∗(h) the equation ψ(x;h, β) = 0 has
exactly two solutions. Thus we have two real numbers x∗, x

∗ ∈ [0, 1] such that

ϕ(x)2 = x and 2βϕ(x)2(1− ϕ(x)) = 1

for (x, β) = (x∗, β∗) or (x∗, β∗). Thus we have 2βx(1−
√
x) = 1 and

h = log

√
x

1−
√
x
− 1

2(1−
√
x)

for x = x∗, x
∗. Define a∗ = x

−1/2
∗ − 1 and a∗ = (x∗)−1/2 − 1. Note that x = (1 + a)−2, β =

(1 + a)3/2a2 for (x, a, β) = (x∗, a∗, β∗) or (x∗, a∗, β∗) and we have

h = − log a− 1 + a

2a
(2.41)

for a = a∗, a
∗. Now the function g(x) = − log x − (1 + x)/2x is strictly increasing for

x ∈ (0, 1/2] and strictly decreasing for x ≥ 1/2. So equation (2.41) has no solution for
h ≥ g(1/2) = log 2 − 3/2 =: h0. For h < h0 equation (2.41) has exactly two solutions and
for h = h0 equation (2.41) has one solution. One can easily check that β∗ ≤ β∗ implies
that a∗ ≤ a∗. Also from the fact that (2.41) has at most two solutions, we have that for
β ∈ (β∗, β

∗) the equation ψ(u) = 0 has exactly three solutions. �
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Figure 2.5: The function ψ(·) for (h, β) = γ(1/4).

Proof of Lemma 2.3.10. For simplicity we will prove the result only for the lower boundary
part, that is, for (h, β) = γ(t) with t < 1/2. The proof for the upper boundary is similar.
Fix t < 1/2. Let us briefly recall the setup. The function ψ(u) = ϕ(u)2 − u has two roots
at 0 < u∗ < v∗ < 1 and ψ′(u∗) < 0 while ψ′(v∗) = 0, ψ′′(v∗) < 0.

Define the function

f(r) =
βr3

3
+ log(1− p)− I(r, p) for r ∈ (0, 1).

From the proof of Lemma 2.3.6 and the fact that ψ′(u) < 0 for u ∈ (u∗, v∗) it is easy to see
that f(ϕ(u∗)) > f(ϕ(v∗)) and

2

n2
logZn(β, h) ≥ f(ϕ(u∗))− K√

n
(2.42)

where K depends on β, h. Now, using the same idea used in the proof of Lemma 2.3.8, we
have

P (∆ ≥ t) ≤ n2 exp

(
− nt2

8(1 + β)

)
for all t ≥ 8β/n and ψ(Lmax) ≥ −∆, ψ(Lmin) ≤ ∆ where

∆ = max
1≤i<j≤n

∣∣∣∣Lij − 1

n

∑
k 6∈{i,j}

ϕ(Lik)ϕ(Ljk)

∣∣∣∣.
Hence there exists ε0 > 0, c > 0 such that whenever ∆ < ε0 we have Lmin ≥ u∗ − c∆ and
either Lmax ≤ u∗ + c∆ or |Lmax − v∗| ≤ c

√
∆. Define

U = {Lmax < (u∗ + v∗)/2}. (2.43)

Then again using the idea used in Lemma 2.3.8 one can easily show that

E(1U · |Lij − u∗|) ≤
K(β, h)

n1/2
for all i < j.

We will show that P(U c) ≤ (log n)2/n and it will imply that

E(|Lij − u∗|) ≤ E(1U · |Lij − u∗|) + P(U c) ≤ K(β, h)

n1/2
for all i < j.
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Then the rest of the assertions follow using the steps in the proof of Theorem 2.4.4.
Hence let us concentrate on the event U c. It is enough to restrict to the event

U c∩{|Lmax− v∗| ≤ c
√

∆}∩{Lmin ≥ u∗− c∆}. Here the rough idea is that, a large fraction
of Lij ’s has to be near v∗ in order to make Lmax ' v∗. Suppose Lmax = Li0j0 . Define the
set

A = {k : Li0k < Lmax − δ1}

where δ1 will be chosen later such that δ1 + c
√

∆ < v∗− u∗. Note that ϕ(u)2 ≤ max{u, u∗}
for all u and by assumption |Lmax − v∗| ≤ c

√
∆. Thus ϕ(Lij) ≤

√
Lmax for all i, j and

ϕ(Li0k) ≤
√
Lmax − δ1 ≤

√
Lmax(1− δ1/2) for k ∈ A. Thus we have

Lmax = Li0j0 ≤ ∆ +
1

n

∑
k 6=i0,j0

ϕ(Li0k)ϕ(Lj0k) ≤ ∆ + Lmax −
|A|δ1

2n

which clearly implies that |A|n ≤
2∆
δ1
. Similarly define the set Aj = {k : Ljk < Lmax − δ2}

where δ2 will be chosen later such that δ2 + c
√

∆ < v∗ − u∗. Using same idea as before, for
j 6∈ A we have

Lmax − δ1 ≤ Li0j ≤ ∆ + Lmax −
|Aj |δ2

2n
or
|Aj |
n
≤ 2(∆ + δ1)

δ2
:= M(say).

Choose δ2 = ∆1/5, δ1 = ∆3/5. Then we have∑
i<j

|Lij − Lmax|2 ≤
n|A|+ nM + n2δ2

2

2

≤ n2∆

δ1
+
n2(∆ + δ1)

δ2
+
n2δ2

2

2
≤ 4n2∆2/5.

Thus, by symmetry and Hölders’ inequality, we have

E(1Uc · |Lij − v∗|2) ≤ K E(1Uc ·∆2/5) ≤ K P(U c)9/10 · E(∆4)1/10

≤ K(log n)1/5

n1/5
P(U c)9/10.

(2.44)

for some constant K. Now using lemma 2.4.2 and equation (2.44) we have,

E

[∣∣E(X)− n2ϕ(v∗)

2

∣∣ ∣∣∣∣ U c] ≤ Cn9/5(log n)1/5

P(U c)1/10

and E

[∣∣T (X)

n
− n2ϕ(v∗)3

6

∣∣ ∣∣∣∣ U c] ≤ Cn9/5(log n)1/5

P(U c)1/10
.

(2.45)

If P(U c) > (log n)2/n, from inequality (2.45) we have

P

(∣∣E(X)− n2ϕ(v∗)

2

∣∣ ≥ Kn19/10

∣∣∣∣ U c) ≤ 1

4

and P

(∣∣T (X)

n
− n2ϕ(v∗)3

6

∣∣ ≥ Kn19/10

∣∣∣∣ U c) ≤ 1

4
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for some large constant K depending on β, h. Now define the set

B =

{
x ∈ {0, 1}n :

∣∣∣∣T (x)

n
− n2ϕ(v∗)3

6

∣∣∣∣ ≤ Kn19/10,

∣∣∣∣E(x)− n2ϕ(v∗)

2

∣∣∣∣ ≤ Kn19/10

}
.

Using the same idea used in the proof of lemma 2.4.4 one can again show that∣∣∣∣ 2

n2
log(ZnP(U c))− f(ϕ(v∗))

∣∣∣∣ ≤ K

n1/10

for some constant K depending on β, h. The crucial fact is that P({Lmax(Z) > (u∗ +
v∗)/2} ∩ {Z ∈ B}) is bounded away from zero when Z = ((Zij))i<j ∼ G(n, ϕ(v∗)). Thus
we have ∣∣∣∣ 2

n2
logZn − f(ϕ(v∗))

∣∣∣∣ ≤ K

n1/10
.

But this leads to a contradiction, since by equation (2.42) we have

2

n2
logZn(β, h) ≥ f(ϕ(u∗))− K√

n

and f(ϕ(u∗)) > f(ϕ(v∗)). Thus we have P(U c) ≤ (log n)2/n and we are done.

�

2.4.2 Proof of the large deviation result for general subgraph count

We will prove Theorem 2.3.12 first. The proof follows the same line as the proof
of Theorem 2.3.5.

Proof of Theorem 2.3.12. Recall the definition of Lij ,

Lij :=
N(X1

(i,j))−N(X0
(i,j))

(n− 2)vF−2
for i < j. (2.46)

In fact we can write Lij explicitly as a horrible sum

Lij =
1

αF (n− 2)vF−2

∑
t1<t2<···<tvF−2

tl∈[n]\{i,j} for all l

∑
(a,b)∈E(F )

′∑
π

∏
(k,l)∈E(F )
(k,l)6=(a,b)

Xπkπl

where the sum
∑′ is over all one-one onto map π from V (F ) = [vF ] to {a, b, t1, . . ., tvF−2}

where {π(a), π(b)} = {i, j}. Now we briefly state the main steps. First we have E(Xij |
rest) = ϕ(Lij). Moreover, using lemma 2.4.1 it is easy to see that

|E(
k∏
j=1

Xi2j−1i2j | rest)−
k∏
j=1

ϕ(Li2j−1i2j )| ≤ Cβ/n



45

for every distinct pairs (i1, i2), . . . , (i2k−1, i2k) where C is an universal constant.

Now, fix 1 ≤ i < j ≤ n. Given a configuration X, construct another one X′ in
the following way. Choose vF − 2 distinct points uniformly at random without replacement
from [n] \ {i, j}. Replace the coordinates in X corresponding to the edges in the complete
subgraph formed by the chosen points including i, j (except that we do not change Xij) by
values drawn from the conditional distribution given the rest of the edges. Call the new
configuration X′. Define the antisymmetric function F (X,X′) := (n − 2)vF−2(Lij − L′ij).
and f(X) := E(F (X,X′) | X). Using the same idea as before and Theorem 2.2.1 we have

P (|Lij − gij | ≥ t) ≤ exp(−cnt2/(1 + β)) (2.47)

where c is an absolute constant and gij is obtained from Lij by replacing Xkl by ϕ(Lkl)
for all k < l. Note that there is a slight difference with the calculation in the triangle
case, since we have to consider collections of edges where some are modified and some are
not. But their contribution will be of the order of n−1. Also the conditions on ϕ arises in
the following way, if all the Lij ’s are constant, say equal to u, then from the “mean-field
equations” for Lij ’s we must have

u ≈ 1

αF (n− 2)vF−2

∑
t1<t2<···<tvF−2

tl∈[n]\{i,j} for all l

∑
(a,b)∈E(F )

′∑
π

ϕ(u)eF−1

=
2eF
αF

ϕ(u)eF−1.

The next step is to show that under the conditions on ϕ, we have E |Lij − u∗| ≤
Kn−1/2 for all i < j where K = K(β, h) is a constant depending only on β, h. The crucial
fact is that the behavior of the function ϕ(u)k − au where a > 0 is a positive constant and
k ≥ 2 is a fixed integer, is same as the behavior of the function ϕ(u)2 − u.

Now it will follow (using the same proof used for lemma 2.4.2) that

E

∣∣∣∣E(X)− n2ϕ(u∗)

2

∣∣∣∣ ≤ Cn3/2

and E

∣∣∣∣N(X)− (n)vFϕ(u∗)eF

αF

∣∣∣∣ ≤ CnvF−1/2

where C is a constant depending only on β, h. The rest of the proof follows using the
arguments used in the proof of Theorem 2.3.5. �

Proof of Theorem 2.3.11. Using the method of proof for the triangle case and the result
from Theorem 2.3.12 the proof follows easily. �

Proof of Lemma 2.3.13. The proof is same as the proof of lemma 2.3.9 except for the con-
stants. �
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2.4.3 Proof for Ising model on Zd: Theorem 2.3.14

Suppose σ is drawn from the Gibbs distribution µβ,h. We construct σ′ by taking
one step in the heat-bath Glauber dynamics as follows: Choose a position I uniformly at
random from Ω, and replace the I-th coordinate of σ by an element drawn from the condi-
tional distribution of the σI given the rest. It is easy to see that (σ,σ′) is an exchangeable
pair. Let

F (σ,σ′) := |Ω|(m(σ)−m(σ′)) = σI − σ′I
be an antisymmetric function in σ,σ′. Since the Hamiltonian is a simple explicit function,
one can easily calculate the conditional distribution of the spin of the particle at position
x given the spins of the rest. In fact we have E(σx|{σy, y 6= x}]) = tanh(2βdmx(σ)) where
mx(σ) := 1

2d

∑
y∈Nx σy is the average spin of the neighbors of x for x ∈ Ω. Now using

Fourier-Walsh expansion we can write the function tanh(2βdmx(σ)) as sums of products of
spins in the following way. We have

tanh(2dβmx(σ)) =

2d∑
k=0

ak(β)
∑

|S|=k,S⊆Nx

σS (2.48)

where

ak(β) :=
1

22d

∑
σ∈{−1,+1}2d

tanh

(
β

2d∑
i=1

σi

)
k∏
j=1

σj (2.49)

for k = 0, 1, . . . , 2d. It is easy to see that ak(β) = 0 if k is even and ak(β) is a rational
function of tanh(2β) if k is odd. Note that the dependence of ak on d is not stated explicitly.
Thus using equation (2.48) and the definitions in (2.20) we have

f(σ) = E[F (σ,σ′)|σ] =
1

|Ω|
∑
x∈Ω

E[σx − σ′x|σ]

= m(σ)− 1

|Ω|
∑
x∈Ω

tanh(2βdmx(σ))

= (1− 2da1(β))m(σ)−
d−1∑
k=1

(
2d

2k + 1

)
a2k+1(β)r2k+1(σ).

Define θk(β) :=
(

2d
2k+1

)
a2k+1(β) for k = 0, 1, . . . , d− 1. Note that we can explicitly calculate

the value of θ0(β) as follows,

θ0(β) =
1

4d

∑
σ∈{−1,+1}2d

tanh

(
β

2d∑
i=1

σi

)
2d∑
i=1

σi =
2

4d

d∑
k=1

2k

(
2d

d+ k

)
tanh(2kβ).

Now we have |F (σ,σ′)| ≤ 2 and

|f(σ)− f(σ′)| ≤ 2

|Ω|

(
|1− θ0(β)|+

d−1∑
k=1

(2k + 1)θk(β)

)
=

2

|Ω|
b(β)
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for all values of σ,σ′. Hence the condition of Theorem 2.2.1 is satisfied with B = 0, C =
2|Ω|−1b(β). So by part (ii) of Theorem 2.2.1 we have

P

(√
|Ω|

∣∣∣∣∣(1− θ0(β))m(σ)−
d−1∑
k=1

θk(β)r2k+1(σ)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

4b(β)

)
for all t > 0. Obviously θ0(·) is a strictly increasing function of β. Also we have θ0(0) = 0
and

θ0(∞) := lim
β→∞

θ0(β) =
1

4d−1

d∑
k=1

k

(
2d

d+ k

)
.

For d = 1 we have θ0(∞) = 1 and for d ≥ 2 we have

θ0(∞) ≥ 1

4d−1

[
2

d∑
k=1

(
2d

d+ k

)
−
(

2d

d+ 1

)]

=
1

4d−1

[
22d −

(
2d

d

)
−
(

2d

d+ 1

)]
= 4− 8

22d+1

(
2d+ 1

d+ 1

)
and from the fact that

∑d+2
k=d−1

(
2d+1
k

)
≤ 22d+1 we have

1

22d+1

(
2d+ 1

d+ 1

)
≤ d+ 2

4(d+ 1)
≤ 1

3
for d ≥ 2.

Hence for d ≥ 2 we have θ0(∞) > 1 and there exists β1 ∈ (0,∞), depending on d, such that
1− θ0(β) > 0 for β < β1 and 1− θ0(β) < 0 for β > β1. This completes the proof.

Proof of Proposition 2.3.16. The proof is almost same as the proof of proposition 2.3.14.
Define σ,σ′ as before. Define the antisymmetric function F (σ,σ′) as follows

F (σ,σ′) : = |Ω|(1 + tanh(h) tanh(2βdmI(σ)))(m(σ)−m(σ′))

= (1 + tanh(h) tanh(2βdmI(σ)))(σI − σ′I).

Recall that mx(σ) := 1
2d

∑
y∈Nx σy is the average spin of the neighbors of x for x ∈ Ω. Now

under µβ,h we have

E(σx|{σy, y 6= x}) = tanh(2βdmx(σ) + h)

=
tanh(h) + tanh(2βdmx(σ))

1 + tanh(h) tanh(2βdmx(σ))
.

Thus we have

f(σ) = E(F (σ,σ′)|σ)

=
1

|Ω|
∑
x∈Ω

(1 + tanh(h) tanh(2βdmx(σ)))E(σx − σ′x|σ)

= m(σ)− tanh(h) +
1

|Ω|
∑
x∈Ω

(tanh(h)σx − 1) tanh(2βdmx(σ)).
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After some simplifications and using the definitions of the functions r, s we have

f(σ) = (1− θ0(β))m(σ)−
d−1∑
k=1

θk(β)r2k+1(σ)

− tanh(h)

(
1−

d−1∑
k=0

θk(β)s2k+1(σ)

)
.

Now for all values of σ,σ′ we have

|f(σ)− f(σ′)| ≤ 2

|Ω|
b(β)(1 + tanh |h|)

and the proof onwards is exactly as in the proof of proposition 2.3.14. �

2.4.4 Proof of the main theorem: Theorem 2.2.2

Assume that ψ(0) > 0. We will handle the case ψ(0) = 0 later. Note that
condition (2.1) implies that xα/ψ(x) is a nondecreasing function for x > 0. Define the
function

ϕ(x) :=
x2

ψ(x)
and γ(x) := 2− xψ′(x)

ψ(x)
for x 6= 0

and ϕ(0) = 0, γ(0) = 2. Clearly we have 2 − α ≤ γ(x) ≤ 2 for all x ∈ R. Now,
lim supx→0 ϕ(x) ≤ limx→0+ x

2−α/ψ(1) = 0 = ϕ(0) as α < 2. Also ϕ(x) is differentiable
in R \ {0} with

ϕ′(x) =
xγ(x)

ψ(x)
> 0 for x 6= 0. (2.50)

Hence ϕ is absolutely continuous in R and is increasing for x ≥ 0.
Define Y = f(X). First we will prove that all moments of ϕ(Y ) are finite. Next

we will estimate the moments which will in turn show that ϕ(Y )1/2 has finite exponential
moment in R. Finally using Chebyshev’s inequality we will prove the tail probability.

By monotonicity of ψ in [0,∞) and definition of α, we have

0 ≤ xψ′(x)

ψ(x)
≤ α for all x ≥ 0. (2.51)

It also follows from (2.50) that 0 ≤ (logϕ(x))′ ≤ 2/x for x > 0 and integrating we have
ϕ(x) ≤ ϕ(1)x2 for all x ≥ 1. Hence ϕ(x) = ϕ(|x|) ≤ ϕ(1)(1 + x2) for all x ∈ R and
this, combined with our assumption that E(|f(X)|k) < ∞ for all k ≥ 1, implies that
E(ϕ(Y )k) <∞ for all k ≥ 1.

Define

β :=

⌈
5(2− α) + δ + 1/4

(2− α)2

⌉
≥ 3.

Fix an integer k ≥ β and define

g(x) =
x2k−1

ψk(x)
and h(x) =

x2k−2

ψk(x)
for x ∈ R.
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Clearly E(|Y g(Y )|) < ∞. Note that g, h are continuously differentiable in R as k ≥
3. Moreover, for x ∈ R we have, |g′(x)| = h(x) |kγ(x)− 1| ≤ (2k − 1)h(x), h′(x) =
(kγ(x)− 2)x2k−3/ψk(x) and

h′′(x) =
[
(kγ(x)− 2) (kγ(x)− 3) + kxγ′(x)

]x2k−4

ψk(x)
.

We also have

xγ′(x) = −xψ
′(x)

ψ(x)

(
1− xψ′(x)

ψ(x)

)
− xψ′′(x)

ψ(x)
≥ −1/4− δ

for x ∈ R. Now k ≥ β implies that

(kγ(x)− 2) (kγ(x)− 3) + kxγ′(x)

≥ (k(2− α)− 2) (k(2− α)− 3)− k(δ + 1/4) ≥ 0

for all x. Thus h′′(x) ≥ 0 for all x and h is convex in R.
Let X ′, F (X,X ′) be as given in the hypothesis. Define Y ′ = f(X ′). Recall that

(X,X ′) is an exchangeable pair and so is (Y, Y ′). Using the fact that f(X) = E(F (X,X ′)|X)
almost surely, exchangeability of (X,X ′) and antisymmetry of F , we have

E(Y g(Y )) = E(f(X)g(Y )) = E(F (X,X ′)g(Y ))

=
1

2
E(F (X,X ′)(g(Y )− g(Y ′))). (2.52)

Now, for any x < y we have∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ =

∣∣∣∣∫ 1

0
g′(tx+ (1− t)y) dt

∣∣∣∣ ≤ (2k − 1)

∫ 1

0
h(tx+ (1− t)y)dt

and convexity of h implies that∫ 1

0
h(tx+ (1− t)y)dt ≤

∫ 1

0
(th(x) + (1− t)h(y))dt = (h(x) + h(y))/2.

Hence, from equation (2.52) we have

E(Y g(Y )) ≤ 2k − 1

4
E(|(Y − Y ′)F (X,X ′)|(h(Y ) + h(Y ′)))

= (2k − 1)E(∆(X)h(Y )) ≤ (2k − 1)E(ψ(Y )h(Y )) (2.53)

where the equality follows by definition of ∆(X) and exchangeability of (Y, Y ′). Thus for
any k ≥ β we have, from (2.53),

E(ϕ(Y )k) ≤ (2k − 1)E(ϕ(Y )k−1). (2.54)

Using induction for k ≥ β we have

E(ϕ(Y )k) ≤ (2k)!2ββ!

2kk!(2β)!
E(ϕ(Y )β) for k ≥ β.
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Also Hölder’s inequality applied to (2.54) for k = β implies that E(ϕ(Y )β) ≤ (2β − 1)β.
Thus we have

E(ϕ(Y )k) ≤

{
(2k)!2ββ!
k!2k(2β)!

E(ϕ(Y )β) if k > β

(2β − 1)k if 0 ≤ k ≤ β.
(2.55)

Note that we have ex ≤ ex + e−x = 2
∑

k≥0 x
2k/(2k)! for all x ∈ R. Combining everything

we finally have

E(exp(θϕ(Y )1/2)) ≤ 2

∞∑
k=0

θ2k

(2k)!
E(ϕ(Y )k)

≤ 2β+1β!

(2β)!
E(ϕ(Y )β)

∞∑
k=β

θ2k

2kk!
+

β−1∑
k=0

2(2β − 1)kθ2k

(2k)!

≤ Cβ exp(θ2/2)

for all θ ≥ 0 where the constant Cβ is given by

Cβ := max

{
2(2β − 1)k2kk!

(2k)!

∣∣∣∣0 ≤ k ≤ β} .
Here we used the fact that (2k)! ≥ 22k−1k!2/k. Now recall that ϕ is an increasing function
in [0,∞). Thus using Chebyshev’s inequality for exp(θϕ(x)1/2) with θ = ϕ(t)1/2 we have

P(|f(X)| ≥ t) ≤ Cβe−θϕ(t)1/2+θ2/2 = Cβe
−ϕ(t)/2.

Now suppose that ψ(0) = 0. For ε > 0 fixed, define ψε(x) = ψ(x) + ε. Clearly we
have ∆(X) ≤ ψε(f(X)) a.s. and ψε satisfies all the other properties of ψ including

xψ′ε(x)/ψε(x) = xψ′(x)/ψ(x) · ψ(x)/(ψ(x) + ε) ≤ α
and xψ′′ε (x)/ψε(x) = xψ′′(x)/ψ(x) · ψ(x)/(ψ(x) + ε) ≤ δ

for all x > 0. Hence all the above results hold for ψε and ϕε(x) = x2/ψε(x). Now ϕε ↑ ϕ as
ε ↓ 0. Letting ε ↓ 0 we have the result.

When ψ is once differentiable with α < 2, it is easy to see that the function h is
nondecreasing (need not be convex) in [0,∞) for k ≥ β := d2/(2 − α)e. In that case we
have ∫ 1

0
h(tx+ (1− t)y)dy ≤ max

z∈[x,y]
h(z) ≤ h(x) + h(y)

for x ≤ y. Hence we have the recursion

E(ϕ(Y )k) ≤ 2(2k − 1)E(ϕ(Y )k−1) (2.56)

for k ≥ β. Using the same proof as before it then follows that

P(|f(X)| ≥ t) ≤ Ce−ϕ(t)/4

where C depends only on α. �
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Chapter 3

First-passage percolation across
thin cylinders

3.1 Introduction

Before stating the results, let us begin with a short review of the first-passage
percolation model and some of the known results.

3.1.1 The model

More than forty years ago, Hammersley and Welsh [54] introduced first-passage
percolation to model the spread of fluid through a randomly porous media. The standard
first-passage percolation model on the d-dimensional square lattice Zd is defined as follows.
Consider the edge set E consisting of nearest neighbor edges, that is, (x,y) ∈ Zd × Zd is
an edge if and only if ‖x− y‖ :=

∑d
i=1 |xi − yi| = 1. With each edge (also called a bond)

e ∈ E is associated an independent nonnegative random variable ωe distributed according
to a fixed distribution F . The random variable ωe represents the amount of time it takes
the fluid to pass through the edge e.

For a path P (which will always be finite and nearest neighbor) in Zd define

ω(P) :=
∑
e∈P

ωe

as the passage time for P. For x,y ∈ Zd, let a(x,y), called the first-passage time, be the
minimum passage time over all paths from x to y. Intuitively a(x,y) is the first time the
fluid will appear at y if a source of water is introduced at the vertex x at time 0. Formally

a(x,y) := inf{ω(P) | P is a path connecting x to y in Zd}.

The principle object of study in first-passage percolation theory is the asymptotic behavior
of a(0, nx) for fixed x ∈ Zd. We refer the reader to Smythe and Wierman [101] and
Kesten [67] for earlier surveys of the subject.



52

The first limit result proved by Hammersley and Welsh [54] was that the limit

ν(x) := lim
n→∞

1

n
E[a(0, nx)] (3.1)

exists and is finite when E[ω] <∞ where ω is a generic random variable from the distribution
F . Moreover results of Kesten [67] show that ν(x) > 0 if and only if F (0) < pc(d) where
pc(d) is the critical probability for standard bernoulli bond percolation in Zd.

First-passage percolation is often regarded as a stochastic growth model by con-
sidering the growth of the random set

Bt := {x ∈ Zd | a(0,x) ≤ t}.

When F (0) = 0, a(·, ·) is a random metric on Zd and Bt is the ball of radius t in this
metric. Moreover, if F (0) < pc(d) and E[ω2] <∞ (or under weaker conditions in Cox and
Durrett [35]), the growth of Bt is linear in t with a deterministic limit shape, that is, as
t → ∞, Bt ≈ tB0 ∩ Zd for a nonrandom compact set B0. Precisely, the shape theorem
says that (see Richardson [94], Cox and Durrett [35] and Kesten [67]), if F (0) < pc(d) and
E[min{ωd1 , ωd2 , . . . , ωd2d}] < ∞ where ω1, . . . , ω2d are i.i.d. from F , there is a nonrandom
compact set B0 such that for all ε > 0

(1− ε)B0 ⊆ t−1B̃t ⊆ (1 + ε)B0 eventually with probability one

where B̃t = {y ∈ Rd | ∃ x ∈ Bt s.t. ‖x− y‖ ≤ 1} is the “inflated” version of Bt.

3.1.2 Fluctuation exponents and and limit theorems

In the physics literature, there are mainly two fluctuation exponents χ and ξ that
describe, respectively, the longitudinal and transversal fluctuations of the growing surface
Bt. For example, it is expected under mild conditions that the first-passage time a(0, nx)
has standard deviation of order nχ, and the exponent χ is independent of the direction
x ∈ Zd. It is also expected that all the paths achieving the minimal time a(0, nx) deviate
from the straight line path joining 0 to nx by distance at most of the order of nξ, that is all
the minimal paths are expected to lie entirely inside the cylinder centered on the straight
line joining 0 to nx whose width is of the order of nξ.

In general the exponents χ and ξ are expected to depend only on the dimension
d not the distribution F . Moreover they are also conjectured to satisfy the scaling relation
χ = 2ξ − 1 for all d (see Krug and Spohn [71]). In fact, the predicted values for d =
2 (for models whose exponents are expected to be same in all directions) are χ = 1/3
and ξ = 2/3 (see Kardar, Parisi and Zhang [65]). For higher dimensions there are many
conflicting predictions. However it is believed that above some finite critical dimension dc,
the exponents satisfy χ = 0 and ξ = 1/2.

We briefly describe the rigorous results known about the exponents χ and ξ. The
first nontrivial upper bound on the variance of a(0, nx) was O(n) for all d due to Kesten [68].
The best known upper bound of n/ log n is due to Benjamini, Kalai and Schramm [10]. In
d = 2 the best known lower bound of log n is due to Pemantle and Peres [92] for exponential
edge weights, Newman and Piza [87] for general edge weights satisfying F (0) < pc(2) or
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F (λ) < pdirc (2) for λ being the smallest point in the support of F where pdirc (2) is the
critical probability for directed Bernoulli bond percolation, and Zhang [112] for x = e1

and edge weight distributions having finite exponential moments and satisfying F (λ) ≥
pdirc (2), F (λ−) = 0, λ > 0.

Hence the only nontrivial bound known for χ is χ ≤ 1/2. Note that the bound
0 ≤ χ ≤ 1/2 along with the scaling relation (which is unproven) would imply that 1/2 ≤
ξ ≤ 3/4. In fact using a closely related exponent χ′ which satisfies χ′ ≥ 2ξ−1 and χ′ ≤ 1/2
(see Newman and Piza [87], Kesten [68] and Alexander [1]), it was proved in [87] that
ξ ≤ 3/4 in any dimension for paths in the directions of strict convexity of the limit shape.
Moreover, Licea, Newman and Piza [76], comparing appropriate variance bounds, proved
that ξ(d) ≥ 1/(d + 1) for all dimensions d. They also proved that ξ′(d) ≥ 1/2 for all
dimensions d for a related exponent ξ′ of ξ.

The next natural question is about the tail behavior and distributional convergence
of the random variables a(0, nx) as x remains fixed and n→∞. Kesten [68] used martingale
methods to prove that P(|a(0, ne1)−E[a(0, ne1)]| ≥ t

√
n) ≤ c1e

−c2t for all t ≤ c3n for some
constants ci > 0, where e1 is the unit vector (1, 0, . . . , 0). Later, Talagrand [106] used his
famous isoperimetric inequality to prove that

P(|a(0, nx)−M ]| ≥ t
√
n ‖x‖) ≤ c1e

−c2t2

for all t ≤ c3n for some constants ci > 0 where M is a median of a(0, nx) and x ∈ Zd.
Both these results were proved for distributions F having finite exponential moments and
satisfying F (0) < pc(d).

From these inequalities, one might näıvely expect that a central limit theorem
holds for a(0, nx). However, the situation is probably much more complex, and it may
not be true that a Gaussian CLT holds. For critical first-passage percolation (assuming
F (0) = 1/2 and F has bounded support) in two dimensions a Gaussian CLT was proved by
Newman and Zhang [69]. However, this is sort of a degenerate case since here E[a(0, nx)]
and Var(a(0, nx)) are both of order log n (see Chayes, Chayes and Durrett [32], and Newman
and Zhang [69]). When F (0) < 1/2, we do not know of any distributional convergence result
in any dimension.

Convergence to the Tracy-Widom law is known for directed last-passage percola-
tion in Z2 under very special conditions (see Subsection 3.1.4 for details), but the techniques
do not carry over to the undirected case. Naturally, one may expect that convergence to
something like the Tracy-Widom distribution may hold for undirected first-passage perco-
lation also, but surprisingly, this does not seem to be the case. In the following subsection,
we present our main result: a Gaussian CLT for undirected first-passage percolation when
the paths are restricted to lie in thin cylinders. This gives rise to an interesting question:
as the cylinders become thicker, when does the CLT break down, if it does?

3.1.3 Our results

We consider first-passage percolation on Zd with height restricted by an integer
h (that will be allowed to grow with n). We assume that the edge weight distribution F
satisfies a standard admissibility criterion, defined below.
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Definition 3.1.1. Given the dimension d, we call a probability distribution function F on
the real line admissible if F is supported on [0,∞), is nondegenerate and we have F (λ) <
pc(d) where λ is the smallest point in the support of F and pc(d) is the critical probability
for Bernoulli bond percolation in Zd.

For simplicity we will consider only first-passage time from 0 to ne1 where e1 is the
first coordinate vector. The same method can be used to prove similar results for a(0, nx)
where x has rational coordinates. Define an(h) as the first-passage time to the point ne1

from the origin in the graph Z× [−h, h]d−1, formally

an(h) := inf{ω(P) | P is a path from 0 to ne1 in Z× [−h, h]d−1}.

Here, by [−h, h] we mean the subset [−h, h] ∩ Z of Z. Informally, an(h) is the minimal
passage time over all paths which deviate from the straight line path joining the two end
points by a distance at most h. Note that by the definition of the exponent ξ we have
an(h) = a(0, ne1) with high probability when h � nξ. We also consider cylinder first-
passage time (see Smyth and Wierman [101], Grimmett and Kesten [52]). A path P from
0 to ne1 is called a cylinder path if it is contained within the x1 = 0 and x1 = n planes.
We define

tn(h) := inf{ω(P) | P is a path from 0 to ne1 in [0, n]× [−h, h]d−1} and

Tn(h) := inf{ω(P) | P is a path connecting {0} × [−h, h]d−1 and

{n} × [−h, h]d−1 in [0, n]× [−h, h]d−1}.

Clearly an(h), tn(h) and Tn(h) are non-increasing in h for any n ≥ 1. Our main result is
that for cylinders that are ‘thin’ enough, we have Gaussian CLTs for an(h), tn(h) and Tn(h)
after proper centering and scaling.

Theorem 3.1.2. Suppose that the edge-weights ωe’s are i.i.d. random variables from an
admissible distribution F . Suppose E[ωp] <∞ for some p > 2. Let {hn}n≥1 be a sequence
of integers satisfying hn = o(nα) where

α <
1

d+ 1 + 2(d− 1)/(p− 2)

Then we have
an(hn)− E[an(hn)]√

Var(an(hn))

w−→ N(0, 1) as n→∞.

In particular, if E[ωp] < ∞ for all p ≥ 1 then the CLT holds when hn = o(nα) with
α < 1/(d+ 1). If hn = O(1) then the F (λ) < pc(d) condition is not needed. Moreover, the
same result is true for tn(hn) and Tn(hn).

In Section 3.2, we will present a generalization of this result (Theorem 3.2.1) to
cylinders of the form Z×Gn where {Gn} is an arbitrary sequence of undirected connected
graphs.
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Theorem 3.1.2 give rise to a new exponent γ(d) defined as

γ(d) := sup

{
α :

an(nα)− E[an(nα)]√
Var(an(nα))

w−→ N(0, 1) as n→∞
}
.

Clearly we have γ(d) ≥ 1/(d+1) for F having all moments finite and satisfying the conditions
in Theorem 3.1.2. Is γ(d) actually equal to 1/(d+ 1)? We do not have the answer for that
yet. However for d = 2, numerical simulations suggest that

Conjecture 3.1.3. For any d = 2, γ(d) = 2/3.

An interesting feature of the proof of Theorem 3.1.2 is that while it is relatively
easy to get a CLT for cylinders of width nα for α sufficiently small, to go all the way up
to α = 1/(d + 1) one needs a somewhat complicated ‘renormalization’ argument that has
to be taken to a certain depth of recursion, where the depth depends on how close α is to
1/(d+1). We are not sure whether this renormalization step is fundamental to the problem
or just an artifact of our proof.

A deficiency of Theorem 3.1.2 is that we do not have formulas for the mean and
the variance of an(hn). Still, we have something: the following result states that under the
hypotheses of Theorem 3.1.2 the mean grows linearly with n and the growth rate does not
depend on hn as long as hn →∞. It also gives upper and lower bounds for the variance of
an(hn).

Proposition 3.1.4. Let µn(hn) and σ2
n(hn) be the mean and variance of an(hn). Assume

that hn →∞ as n→∞. Then

lim
n→∞

µn(hn)

n
= ν(e1),

where ν(e1) is defined as in (3.1). Moreover, if F is admissible we have

c1
n

hd−1
n

≤ σ2
n(hn) ≤ c2n

for some absolute constants c1, c2 > 0 depending only on d and F . If hn = h for all n for
fixed h ∈ (0,∞), then both limn→∞ µn(h)/n and limn→∞ σ

2
n(h)/n exist and are positive for

any non-degenerate distribution F on [0,∞), but their values depend on h.

In fact when hn = h for all n for fixed h ∈ (0,∞), we can say much more. Define
µ(h) := limn→∞ µn(h)/n and σ2(h) := limn→∞ σ

2
n(h)/n. Existence of the limits follow

from Proposition 3.1.4. Now consider the continuous process X(·) defined by X(n) =
tn(h) − nµ(h) for n ∈ {0, 1, . . .} and extended by linear interpolation. Then we have the
following result.

Proposition 3.1.5. Assume that E[ωp] <∞ for some p > 2 where ω ∼ F . Then the scaled
process {(nσ2(h))−1/2X(nt)}t≥0 converges in distribution to the standard Brownian motion
as n→∞.
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Here we mention that even though we have lower and upper bounds for the variance
of an(hn) in Proposition 3.2.3, none of the bounds seem to be the correct one, at least when
d = 2 when hn →∞. In Section 3.6 we provide some heuristic justification for that. In fact
numerical simulation suggests the following.

Conjecture 3.1.6. For d = 2 and hn � n2/3, Var(an(hn)) = Θ(nh
−1/2
n ).

Finally let us mention that a variant of Theorem 3.1.2 can be proved for the first-
passage site percolation model also. Here instead of edge-weights {ωe | e ∈ E} we have
vertex weights {ωx | x ∈ Zd} and travel time for a path P is defined by ω(P) =

∑
v∈P ωv.

The same proof technique should work.

3.1.4 Comparison with directed last-passage percolation

In all the previous discussions we used undirected first-passage times. A directed
model is obtained when instead of all paths, one considers only directed paths. A directed
path is a path that moves only in the positive direction at each step (e.g. in d = 2, the
path moves only up and right). Let us restrict ourselves to d = 2 henceforth. The directed
(site/bond) last-passage time to the point (n, h) starting from the origin is defined as

Ls↑(n, h) := sup{ω(P) | P ∈ Π(n, h)},

where Π(n, h) is the set of all directed paths from (0, 0) to (n, h). Note that all the paths
in Π(n, h) are inside the rectangle [0, n]× [0, h].

The directed last-passage site percolation model in d = 2 has received particular
attention in recent years, due to its myriad connections with the totally asymmetric simple
exclusion process, queuing theory and random matrix theory. An important breakthrough,
due to Johansson [63], says that when the vertex weights ωx’s are i.i.d. geometric random
variables, Ls↑(n, n) has fluctuations of order n1/3 and has the same limiting distribution as
the largest eigenvalue of a GUE random matrix upon proper centering and scaling. (This
is also known as the Tracy-Widom law.) Moreover, this holds if we replace Ls↑(n, n) with
Ls↑(n, bρnc) for any ρ ∈ (0, 1]. This continues to hold if one replaces geometric by exponential
or bernoulli random variables [64, 51], but no greater generality has been proved.

Since the above result holds for arbitrary ρ > 0, one can speculate whether we
can actually take ρ → 0 as n → ∞, i.e. look at directed last-passage percolation in thin
rectangles. Indeed, the analog of Johansson’s result in this setting was proved by several
authors [6, 16, 105] in recent years for quite a general class of vertex weight distributions,
provided the rectangles are ‘thin’ enough. This result contrasts starkly with our result
about the Gaussian behavior of first-passage percolation in thin rectangles. A version of
the result for last-passage percolation in thin rectangles is stated in Theorem 3.1.7. We
recall that the GUE Tracy-Widom distribution has distribution function

F2(x) := exp

(
−
∫ ∞
x

(s− x)q2(s) ds

)
,

where q(·) solves the Painlevé II equation q′′ = 2q3+xq subject to the condition q(x) ∼ Ai(x)
as x→∞ and Ai(x) is the Airy function.
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Theorem 3.1.7 (see [6, 16, 105]). Suppose that the vertex weights {wij : (i, j) ∈ Z2}
are i.i.d. random variables with mean µ, variance σ2 and finite p-th moment for some
2 < p <∞. Then for the directed first-passage site percolation we have

Ls↑(n, k)− µ(n+ k)− 2σ
√
nk

σk−1/6n1/2

w−→ F2

as n → ∞ where k = o(nα) for some α < 6
7

(
1
2 −

1
p

)
and F2 is the GUE Tracy-Widom

distribution.

In particular, if all moments of the vertex weights are finite, then the result is true
for α < 3/7. The same result holds if we replace first-passage time T s↑ (n, k) by last passage
time Ls↑(n, k).

Note that in the definition of first-passage time one can restrict the paths to self-
avoiding paths (for which all the visited vertices are distinct), as for any path removing a
loop decreases the weight of the path. In directed first and last-passage percolation one
consider self-avoiding paths of minimal length (which is n + k) and number of such paths
is
(
n+k
k

)
= eΘ(k logn) = eo(n) when k = o(nα) for some α < 1. But in the undirected case

number of paths is exponential in n. This follows easily from the fact that, number of
self-avoiding paths from (0, 0) to (n, 1) in the rectangle {0, 1, . . . , n} × {0, 1} is 2n. In fact,
even if in the previous example one look at the number of paths having length n + 1 + 2i
it is

(
n+1
2i+1

)
for i = 0, 1, . . . , bn/2c and the number is exponential when i = Θ(n).

In [105], Suidan derived universality of oriented last passage percolation for thin
rectangles from the result for exponential edge weights using a theorem of Chatterjee [25, 26]
which is inspired by Lindeberg’s proof of the Central Limit Theorem. In our case that
strategy will not work as the number of paths is exponential in n.

3.1.5 Structure of the chapter

The chapter is organized in the following way. In Section 3.2 we state a general
result that encompasses Theorem 3.1.2. In Section 3.3 we prove the asymptotic behavior
of the mean of an(Gn). Sections 3.4 and 3.5 contain, respectively, the lower bound for the
variance and upper bounds for general central moments of an(Gn). Section 3.6 contains
a different proof for the case of exponential edge weights, which also indicates why the
variance bounds are not tight in general. In Section 3.7 we prove the generalized version of
Theorem 3.1.2 and in Section 3.8 we consider the case of first-passage time across [0, n]×G
when G is a fixed graph. Finally, in Section 3.9 we provide some numerical results in support
of our conjectures.

3.2 Generalization

In this section, we generalize the theorems of Section 3.1 to first-passage perco-
lation on graphs on the form Z × Gn, where {Gn} is an arbitrary increasing sequence of
undirected graphs.
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Before stating the results, let us fix our notations. The set {a, a + 1, . . . , b} with
the nearest neighbor graph structure will be denoted by [a, b]. When a = 0, we will simply
write [b] instead of [0, b]. Throughout the rest of the article we will consider the undirected
first-passage bond percolation model with edge weight distribution F , as defined in the
previous section. Let µ and σ2 be the mean and the variance of F . We will use the
standard notations an = O(bn) and an = o(bn), respectively, in the case supn≥1 an/bn <∞
and limn→∞ an/bn = 0.

For two finite connected graphs H and G, we define the product graph structure
on H ×G in the natural way, that is, there is an edge between (u,w) and (v, z) if and only
if either (u, v) is an edge in H and w = z, or u = v and (w, z) is an edge in G.

We will consider first-passage percolation on a special class of product graphs. Fix
an integer n and a connected graph G with a distinguished vertex o ∈ G. Let an(G) denote
the first-passage time from (0, o) to (n, o) in Z×G. That is,

an(G) := inf{ω(P) | P is a path from (0, o) to (n, o) in Z×G}

where ω(P) :=
∑

e∈P ωe is weight of the path P. We define the cylinder first-passage time
tn(G) as

tn(G) := inf{ω(P) : P is a path from (0, o) to (n, o) in [0, n]×G}.

We also define the side-to-side (cylinder) first-passage time as follows:

Ta,b(G) := min{ω(P) | P is a path connecting the two sides

{a} ×G and {b} ×G in [a, b]×G},
(3.2)

that is, Ta,b(G) is the minimum weight among all paths that join the right boundary of the
product graph [a, b]×G to the left boundary of it. Note that it is enough to consider only
those paths that start from some vertex in {a}×G and end at some vertex in {b}×G, and
lie in the set [a+1, b−1]×G throughout except for the first and last edges. One implication
of this fact is that Ta,b(G) is independent of the weights of the edges in the left and right
boundaries {a} ×G, {b} ×G. We will write T0,n(G) simply as Tn(G).

Now consider a nondecreasing sequence of connected graphs Gn = (Vn, En), n ≥ 1.
By ‘nondecreasing’ we mean that Gn is a subgraph (need not be induced) of Gn+1 for all
n. Let o be a distinguished vertex in G1, which we will call the origin of G1. Then o ∈ Gn
for all n. Let kn and dn be the number of edges and the diameter of Gn, respectively.

Our object of study is first-passage percolation on the product graph Z × Gn
with i.i.d. edge weights from the distribution F . In particular, we wish to understand the
behavior of the first-passage time an(Gn) from (0, o) to (n, o).

The main result of this section is the following.

Theorem 3.2.1. Let Gn be a nondecreasing sequence of connected graphs with a fixed origin
o. Let dn and kn be the diameter and the number of edges in Gn. Suppose that as n→∞,
kn = O(dθn) for some fixed θ ≥ 1. Let an(Gn) be the first-passage percolation time from (0, o)
to (n, o) in the graph Z×Gn. Suppose that a generic edge weight ω satisfies E[ωp] <∞ for
some p > 2. Then we have

an(Gn)− E[an(Gn)]√
Var(an(Gn))

w−→ N(0, 1)
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as n→∞ provided one of following holds:

(A) There is a fixed connected graph G such that Gn = G for all n ≥ 1, or

(B) Gn’s are connected subgraphs of Zd−1 for some d > 1, the edge weight distribution is
admissible and dn = o(nα), where

α <
1

2 + θ + 2θ/(p− 2)
.

Moreover, the same result holds for tn(Gn), Tn(Gn) in place of an(Gn).

Clearly, this theorem implies Theorem 3.1.2 by taking Gn = [−hn, hn]d−1 with
dn = 2hn(d − 1)1/2 and θ = d − 1. Throughout the rest of the paper we will consider the
case of general sequence Gn.

As we remarked earlier we do not have explicit formulas for the mean and the vari-
ance of an(Gn). The following result is the generalization of the ‘mean part’ of Proposition
3.1.4.

Proposition 3.2.2. Consider the setup introduced above. Then the limit

ν := lim
n→∞

1

n
E[an(Gn)]

exists and we have

νn ≤ E[an(Gn)] ≤ µn for all n.

Moreover, ν > 0 if Gn = G for all n ≥ 1 or Gn’s are subgraphs of Zd−1 and F (0) < pc(d).
In particular, when Gn = [−hn, hn]d−1 and hn →∞ as n→∞, we have ν = ν(e1), where
ν(e1) is defined as in (3.1). We also have

E[an(Gn)] ≤ E[tn(Gn)] ≤ E[Tn(Gn)] + 2µdn ≤ E[an(Gn)] + 2µdn

for all n.

Now let us state the upper and lower bounds for the variance of an(Gn), i.e. the
‘variance part’ of Proposition 3.1.4.

Proposition 3.2.3. Under the condition of Theorem 3.2.1 we have

c1
n

kn
≤ Var(an(Gn)) ≤ c2n

for some positive constants c1, c2 that do not depend on n. Moreover,

lim
n→∞

1

n
Var(an(Gn))

exists for all non-degenerate distribution F on [0,∞) when Gn = G for all n. The above
results hold for tn(Gn) and Tn(Gn).
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In fact when Gn = G for all n ≥ 1, we can say much more as in Proposition 3.1.5.
Define

µ(G) := lim
n→∞

E[an(G)]

n
and σ2(G) := lim

n→∞

Var(an(G))

n
. (3.3)

Existence and positivity of the limits follow from Propositions 3.2.2 and 3.2.3. Consider
the continuous process X(·) defined by X(n) = tn(G) − nµ(G) for n ≥ 0 and extended by
linear interpolation. Then we have the following result.

Proposition 3.2.4. Assume that the generic edge weight ω is non-degenerate and satisfies
E[ωp] <∞ for some p > 2. Then the scaled process

{(nσ2(G))−1/2X(nt)}t≥0

converges in distribution to the standard Brownian motion as n→∞.

3.3 Estimates for the mean

In this section we will prove Proposition 3.2.2. We will break the proof into several
lemmas. Lemma 3.3.1 shows that the random variables an(Gn), tn(Gn) and Tn(Gn) are close
in Lp norm when the diameter dn of Gn is small.

Corollary 3.3.1. We have

Tn(Gn) ≤ an(Gn) ≤ tn(Gn) for all n.

Moreover we have

E[|tn(Gn)− Tn(Gn)|p] ≤ 2pdpnE[ωp] for all n ≥ 1

when E[ωp] <∞ for some p ≥ 1 and a typical edge weight ω ∼ F .

Proof. Fix any path P from (0, o) to (n, o) in Z × Gn. The path P will hit {0} × Gn and
{n} × Gn at some vertices. Let (0, u) be the vertex where P hits {0} × Gn the last time
and (n, v) be the vertex where P hits {n}×Gn the first time after hitting (0, u). The path
segment of P from (0, u) to (n, v) lies inside [n]×Gn and by non-negativity of edge weights
we have ω(P) ≥ Tn(Gn). Since this is true for any path P joining (0, o) to (n, o) in Z×Gn,
we have Tn(Gn) ≤ an(Gn).

Clearly an(Gn) ≤ tn(Gn). Combining the two inequalities, we see that

Tn(Gn) ≤ an(Gn) ≤ tn(Gn) for all n.

Since the number of paths joining the left side {0} × Gn to the right side {n} × Gn in
[0, n] × Gn is finite there is a path achieving the minimal weight Tn(Gn). Choose such a
path P∗ using a deterministic rule. Suppose that the path P∗ starts at (0, u) and ends
at (n,w). As we remarked earlier in Section 3.2 the random variables Tn(Gn),P∗, u, w are
independent of the edge weights ωe where e is an edge in {0} ×Gn or {n} ×Gn.
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Let P(u),P(w) be some minimal length paths in Gn joining o, u and o, w respec-
tively. We have tn(Gn) − Tn(Gn) ≤ Sn where Sn is the sum of edge weights in the paths
{0} × P(u) and {n} × P(w) and hence

E[|tn(Gn)− Tn(Gn)|p] ≤ E[Spn].

Moreover by independence of u,w and the edge weights in {0, n}×Gn we have E[Spn|u,w] ≤
(|P(u)|+ |P(w)|)pE[ωp]. By definition of diameter we have |P(u)|+ |P(w)| ≤ 2dn and thus
we are done. �

The following lemma combined with Lemma 3.3.1 completes half of the proof of
Proposition 3.2.2. Recall that {Gn} is a nondecreasing sequence of finite connected graphs.

Corollary 3.3.2. The limit

ν = lim
n→∞

E[an(Gn)]

n

exists and we have

νn ≤ E[an(Gn)] ≤ µn for all n.

Moreover, we have ν < µ if dn ≥ 1 and F is non-degenerate.

Proof. Considering the straight line path from (0, o) to (n, o) it is easy to see that E[an(Gn)] ≤
µn. The existence of the limit is easily obtained from subadditivity as follows. Fix n,m.
Consider Gn and Gm as subgraphs of Gn+m. Let an,n+m(Gm) denote the first-passage time

in Z×Gm from (n, o) to (n+m, o). Clearly an,n+m(Gm)
d
= am(Gm). Joining the minimal

weight paths from (0, o) to (n, o) achieving the weight an(Gn) and from (n, o) to (n+m, o)
achieving the weight an,n+m(Gm), we get a path in Z × Gn+m from (0, o) to (n + m, o).
Clearly

an+m(Gn+m) ≤ an(Gn) + an,n+m(Gm).

Now taking expectation in both sides and using the subadditive lemma we have

ν := lim
n→∞

E[an(Gn)]

n

exists and equals infn≥1E[an(Gn)]/n.

To show that ν < µ it is enough to consider the one edge graph Gn = G = {0, 1}
and n even. Consider the following two paths from (0, 0) to (2n, 0). One is the straight
line path. The other is the path connecting (0, 0), (0, 1), (1, 1), (1, 0), (2, 0) and repeating
the same pattern. Clearly we have E[a2n(G)] ≤ µn+nE[min{ω1, ω2 +ω3 +ω4}] where ωi’s
are i.i.d. from F . From here it is easy to see that ν < µ. �

We complete the proof of Proposition 3.2.2 by finding lower bound for ν under ap-
propriate conditions. Recall that ν(e1) > 0 iff F (0) < pc(d) where e1 is the first coordinate
vector in Zd and ν(x) is defined as in (3.1).
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Corollary 3.3.3. Suppose Gn’s are subgraphs of Zd−1. Then the limit ν in Lemma 3.3.2
satisfies

ν ≥ ν(e1)

where ν(e1) is as defined in (3.1). Equality holds when Gn = [−hn, hn]d−1 with hn →∞ as
n→∞. Moreover, the limit ν is positive if Gn = G for all n.

Proof. First suppose that Gn = G for all n and G has v vertices. It is easy to see that
E[an(Gn)] ≥ nE[Y ] where Y is the minimum of v i.i.d. random variables each having
distribution F , because any path from (0, o) to (n, o) must contain at least one edge of the
form ((k, u), (k + 1, u)) for each k = 0, . . . , n− 1. Since E[Y ] > 0, it follows that ν > 0.

Now consider the case when Gn’s are subgraphs of Zd−1 (we will match o with
the origin in Zd−1). Then Z × Gn is a subgraph of Zd with (0, o) = 0 and (n, o) = ne1

where 0 and e1 denote the origin and the first coordinate vector in Zd. Clearly we have
a(0, ne1) ≤ an(Gn) for all n. Diving both sides by n and taking expectations we have

ν = lim
n→∞

1

n
E[an(Gn)] ≥ lim

n→∞

1

n
E[a(0, ne1)] = ν(e1).

To prove that ν = ν(e1) when Gn = [−hn, hn]d−1, break the cylinder graph [n] × Gn
into smaller cylinder graphs of length bln/Cc for some fixed constant C > 0 where ln =
min{n1/2, hn}. Note that concatenating paths from (iln/C, o) to ((i + 1)ln/C, o) for i =
0, 1, . . . we get a path from (0, o) to (n, o). Let n = mdln/Ce+ r with r < dln/Ce. Thus we
have

E[an(Gn)] ≤ mE[X(dln/Ce, ln)] + E[X(r, ln)] (3.4)

where

X(n, h) := inf{ω(P) | P is a path from (0, o) to (n, o) that lies in the

rectangle [1, n− 1]× [−h, h]d−1 except for the first and last edge}.

Dividing both sides of (3.4) by n and taking limits (note ln = o(n) and ln →∞ as n→∞)
we have

ν := lim
n→∞

1

n
E[an(Gn)] ≤ lim inf

n→∞

E[X(dn/Ce, n)]

dn/Ce
≤ lim

n→∞

E[X(n, bCnc)]
n

for any C > 0. The last limit exists by subadditivity. Denote the last limit by α(C) which
also satisfies α(C) = infnE[X(n, bCnc)/n. Now let us consider the unrestricted cylinder
percolation time t(0, ne1) defined as the minimum weight among all paths from 0 to ne1

lying in the vertical strip 0 < x1 < n except for the first and the last edge. From standard
results in first-passage percolation theory (see Section 5.1 in Smythe and Wierman [101] for
a proof) we have

lim
n→∞

1

n
E[t(0, ne1)] = ν(e1).

Now for fixed n, the random variables X(n, bCnc) are decreasing in C and t(0, ne1) =
limC→∞X(n, bCnc). By monotone convergence theorem we have

E[t(0, ne1)] = lim
C→∞

E[X(n, bCnc)] ≥ lim sup
C→∞

α(C)n ≥ νn.

Dividing both sides by n and letting n→∞ we are done. �
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3.4 Lower bound for the variance

Here we will prove the lower bound for the variance given in Proposition 3.2.3.
First we will prove a uniform lower bound that holds for any n and G. Later we will
specialize to the case G = Gn for given n.

Corollary 3.4.1. Let G be a subgraph of Zd−1 with diameter D and number of edges k.
Let F be admissible. Then we have

Var(tn(G)) ≥ c1
n

k
and Var(Tn(G)) ≥ c1

n

k

(
1− c2

D

n

)
(3.5)

for some absolute positive constants c1, c2 that depend only on d and F . The same result
holds for all nondegenerate probability distributions F on [0,∞) with ci depending only on
G and F . In particular, when D ≤ n/(2c2) we have

Var(Tn(G)) ≥ c3
n

k

for all n, k for some absolute constant c3 > 0.

Proof. Fix G and n. Let v be the number of vertices in G. Let {e1, e2, . . . , eN} be a fixed
enumeration of the edges in [n]×G where N = (n+ 1)k+nv is the number of edges in that
graph. For simplicity let us write tn(G) simply as t. Let Fi be the sigma-algebra generated
by {ω(e1), ω(e2), . . . , ω(ei)} for i = 0, 1, . . . , N . For simplicity we will write ωi instead of
ω(ei). Also we will write t(ω) to explicitly write the dependence of t on the sequence of
edge-weights ω = (ω1, ω2, . . . , ωN ).

Using Doob’s martingale decomposition we can write the random variable t−E[t]
as a sum of martingale difference sequences E[t|Fi] − E[t|Fi−1], i = 1, 2, . . . , N . Since
martingale difference sequences are uncorrelated we have the standard identity

Var(t) =
N∑
i=1

Var(E[t|Fi]− E[t|Fi−1]).

For 1 ≤ i ≤ N , let ω̂i denote the sequence of edge-weights ω excluding the weight ωi.
Moreover, for x ∈ R+, we will write (ω̂i, x) to denote the sequence of edge-weights where
the weight of the edge ej is ωj for j 6= i and x for j = i. Clearly we have ω = (ω̂i, ωi)
for i = 1, 2, . . . , N . If η is a random variable distributed as F and is independent of ω,
then we have E[t|Fi] − E[t|Fi−1] = E[t(ω̂i, ωi) − t(ω̂i, η)|Fi]. It is easy to see that (as
Var(t) ≥ Var(E[t|F ]))

Var(E[t(ω̂i, ωi)− t(ω̂i, η)|Fi]) ≥ Var(E[E[t(ω̂i, ωi)− t(ω̂i, η)|Fi]|ωi])
= Var(E[t(ω)|ωi]).

Now for any random variable X we have Var(X) = 1
2 E(X1 − X2)2 where X1, X2 are

i.i.d. copies of X. Thus we have

Var(E[t(ω)|ωi]) =
1

2
E[(E[t(ω̂i, ωi)− t(ω̂i, η)|ωi, η])2]

= E[(1{ωi>η}E[t(ω̂i, ωi)− t(ω̂i, η)|ωi, η])2] (3.6)
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where in the last line we have used the fact that ωi and η are i.i.d. . Define

∆i := E[1{ωi>η}(t(ω̂
i, ωi)− t(ω̂i, η))|ω] (3.7)

for i = 1, 2, . . . , N . From (3.6) we have Var(E[t(ω)|ωi]) ≥ (E[∆i])
2 for all i. Combining we

have

Var(t) ≥
N∑
i=1

(E[∆i])
2 ≥ 1

N

(
N∑
i=1

E[∆i]

)2

=
1

N
(E[g(ω)])2

where

g(ω) :=
N∑
i=1

∆i =
N∑
i=1

E[1{ωi>η}(t(ω)− t(ω̂i, η))|ω].

Let P∗(ω) be a minimum weight path for ω chosen according to a deterministic
rule. If the edge ei is in P∗(ω), we have

1{ωi>η}(t(ω)− t(ω̂i, η)) ≥ 1{ωi>η}(ωi − η) = (ωi − η)+

as the weight of the path P∗(ω) for the configuration (ω̂i, η) is t(ω)−ωi + η. Thus we have

g(ω) ≥
∑

i:ei∈P∗(ω)

E[(ωi − η)+|ωi]. (3.8)

Now define the function

h(x) = E[(x− η)+] where η ∼ F.

It is easy to see that h(x) = 0 iff x ≤ λ where λ is the smallest point in the support of F
and E[h(ω)] <∞.

Define a new set of edge weights ω′i = h(ωi) for i = 1, 2, . . . , N with distribution
function F ′. Clearly ω′i’s are i.i.d. with F ′(0) = P(h(ω) = 0) = P(ω = λ). Moreover
let t(ω′) be the cylinder first-passage time from (0, o) to (n, o) in [0, n] × G with edge
weights ω′. From (3.8) we have g(ω) ≥ t(ω′). Now from Lemma 3.3.2 and 3.3.3 we have
E[t(ω′)] ≥ ν ′(e1)n where ν ′(e1) is as defined in (3.1) with edge weight distribution F ′ and
ν ′(e1) > 0 as F ′(0) < pc(d). Also note that N = (n + 1)k + nv ≤ 3nk. Thus, finally we
have

1

n
Var(t) ≥ 1

3k

(
E[t(ω′)]

n

)2

≥ ν ′(e1)2

3k
. (3.9)

Now assume that F is any non-degenerate distribution supported on [0,∞). From
Lemma 3.3.3 we can see that E[tn(G)] ≥ cn for all n for some constant c > 0 depending on
G and F . Thus we are done.

To prove the result for Tn(G) we start with Tn(G) in place of tn(G) and use
E[Tn(G)] ≥ E[tn(G)]− 2µD from Lemma 3.3.1 in (3.9). �
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Proof of the lower bound in Proposition 3.2.3. From Lemma 3.3.1 we have

|Var(an(Gn))1/2 −Var(tn(Gn))1/2| ≤ (E[|an(Gn)− tn(Gn)|2])1/2

≤ 2dn(µ2 + σ2)1/2

for all n ≥ 1. Now under Theorem 3.2.1 we have dn = o(n1/(2+θ)) which clearly implies
that d2

n = o(n/kn) as kn = O(dθn). Thus by Lemma 3.4.1 we are done. Using Lemma 3.5.5
one can drop the condition dn = o(n1/(2+θ)) when F is admissible. �

3.5 Upper bound for Central moments

In this section we will prove upper bounds for central moments of an(Gn), tn(Gn)
and Tn(Gn), in particular the upper bound for variance of an(Gn) stated in Proposition 3.2.3.
Note that by Lemma 3.3.1 we have

E[|tn(Gn)− an(Gn)|p] ≤ E[|tn(Gn)− Tn(Gn)|p] ≤ E[(2dnω)p]

for all n when E[ωp] <∞ for some p ≥ 2 with ω ∼ F . Hence it is enough to prove bounds
for E[|tn(Gn)− E[tn(Gn)]|p].

Fix n ≥ 1 and a finite connected graph G. We will prove the following.

Proposition 3.5.1. Let E[ωp] < ∞ for some p ≥ 2 and F (0) < pc(d) where ω ∼ F . Also
suppose that G is a finite subgraph of Zd−1. Then for any n ≥ 1 we have

E[|tn(G)− E[tn(G)]|p] ≤ cnp/2

where c is a constant depending only on p, d and F . Moreover, the same result holds with
c depending on G without any restriction on F (0). The above result holds for an(G) and
Tn(G) when

D ≤ Cn1/2

for some absolute constant C > 0 where D is the diameter of G.

When F has finite exponential moments in some neighborhood of zero, one can
use Talagrand’s [106] strong concentration inequality along with Kesten’s Lemma 3.5.5 to
prove a much stronger result P(|tn(G) − E[tn(Gn)]| ≥ x) ≤ 4e−c1x

2/n for x ≤ c2n for
some constants c1, c2 > 0. Moreover, one can use moment inequalities due to Boucheron,
Bousquet, Lugosi and Massart [21] to prove that the p-th moment is bounded by np/2kp/2−1

for p ≥ 2. But none of that gives what we need for the proof of Theorem 3.2.1, so we have
to devise our own proof of Proposition 3.5.2.

The next two technical lemmas will be useful in the proof of Proposition 3.5.1.
Proofs of the two technical lemmas and of Proposition 3.5.1 are given at the end of this
section.

Corollary 3.5.2. For any p > 2 and x, y ∈ R we have∣∣x|x|p−2 − y|y|p−2
∣∣ ≤ max{1, (p− 1)/2}|x− y|(|x|p−2 + |y|p−2).
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Corollary 3.5.3. Let β > 1, a, b ≥ 0. Let y ≥ 0 satisfy yβ ≤ a+ by. Then

yβ−1 ≤ a(β−1)/β + b.

Before proving Proposition 3.5.1 we need to define a new random variable Ln(G).
Consider cylinder first-passage time tn(G) in [n]×G. Call a path P from (0, o) to (n, o) in
[n] ×G a weight minimizing path if its weight ω(P) equals tn(G). An edge e of [n] ×G is
called an essential edge if all weight minimizing paths pass through the edge e. Let Ln(G)
denote the number of essential edges given the edge weights ω. Clearly Ln(G) is a random
variable. Lemma 3.5.4 gives upper bound for the p-th central moment of tn(G) in terms of
moments of Ln(G). Roughly it says that the fluctuation of tn(G) around its mean behaves
like square root of Ln(G).

Corollary 3.5.4. Let E[ωp] <∞ for some p ≥ 2 where ω ∼ F . Then we have

E[|tn(G)− E[tn(G)]|p] ≤ (2p)p/2E[Ln(G)p/2]E[ω2]p/2

+ 2p/2(2p)p−2E[Ln(G)]E[ωp]

where Ln(G) is the number of essential edges for tn(G).

Proof. The proof essentially is a general version of the Efron-Stein inequality. Fix n,G and
a fixed enumeration {e1, . . . , eN} of the edges in [n]×G where N is the number of edges in
that graph. Consider the random variable tn(G)−E[tn(G)] as a function f(ω) of the edge
weight configuration ω = (ω1, . . . , ωN ) ∈ RN+ where ωi is the weight of the edge ei.

Let ω′1, . . . , ω
′
N be i.i.d. copies of ω1. For a subset S of {1, 2, . . . , N} define ωS ∈ RN+

as the configuration where (ωS)i = ωi for i /∈ S and (ωS)i = ω′i for i ∈ S. Recall that [i]
denote the set {1, 2, . . . , i}. Clearly ω[0] = ω.

For illustration we will prove the p = 2 case first which is the Efron-Stein inequality.
Recall that E[f(ω)] = 0. We have

E[f(ω)2] = E[f(ω)(f(ω)− f(ω[N ]))] =

N∑
i=1

E[f(ω)(f(ω[i−1])− f(ω[i]))].

Exchanging ωi, ω
′
i one can easily see that (ω{i},ω[i],ω[i−1])

d
= (ω,ω[i−1],ω[i]) and hence we

have

E[f(ω)2] =
1

2

N∑
i=1

E[(f(ω)− f(ω{i}))(f(ω[i−1])− f(ω[i]))].

By Cauchy-Schwarz inequality and exchangeability of ωi, ω
′
i we see that

E[f(ω)2] ≤
N∑
i=1

E[(f(ω)− f(ω{i}))21{ω′i > ωi}].
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Now note that ω′i > ωi and f(ω) 6= f(ω{i}) implies that the i-th edge ei is essential for the
configuration ω and moreover, 0 < f(ω{i})− f(ω) ≤ ω′i − ωi ≤ ω′i. Also ω′i is independent
of ω. Thus we have

E[f(ω)2] ≤
N∑
i=1

E[(ω′i)
21{ei is essential for ω}] = E[ω2

i ]E[Ln]

where Ln is the number of essential edges for the configuration ω.
Let g(·) be the function g(x) = x|x|p−2. Using similar decomposition as was done

for p = 2 case we have

E[|f(ω)|p] =
1

2

N∑
i=1

E[(f(ω)− f(ω{i}))(g(ω[i−1])− g(ω[i]))].

Now Lemma 3.5.2 and symmetry of ωi and ω′i imply that

E[|f(ω)|p] ≤ ap
N∑
i=1

E
[
|f(ω)− f(ω{i})||f(ω[i−1])− f(ω[i])|

·
(
|f(ω[i−1])|p−2 + |f(ω[i])|p−2

)
1{ω′i > ωi}

]
where ap = max{1, (p − 1)/2}. Note that ω′i > ωi, f(ω{i}) 6= f(ω) and f(ω[i]) 6= f(ω[i−1])
imply that 0 < f(ω{i})− f(ω), f(ω[i])− f(ω[i−1]) ≤ ω′i and the edge ei is essential for both
the configurations ω and ω[i−1]. Moreover in that case we have

|f(ω[i])|p−2 ≤ | |f(ω[i−1])|+ ω′i|p−2

≤ 3|f(ω[i−1])|p−2 + max{2, (2(p− 3))p−3}(ω′i)p−2.

The last line follows easily when p ≤ 3. For p > 3 the last line follows by taking ε =
e−1/(p−3), using Jenson’s inequality (a+ b)p−2 ≤ ε3−pxp−2 + (1− ε)3−pyp−2 and (1− ε)−1 ≤
max{2, 2(p− 3)}. Thus

E[|f(ω)|p] ≤
N∑
i=1

E
[
(ω′i)

21{ei is essential for ω[i−1]}

·
(

4ap|f(ω[i−1])|p−2 + bp(ω
′
i)
p−2
)]

where bp = ap max{2, (2(p− 3))p−3}. Simplifying we have

E[|f(ω)|p] ≤
N∑
i=1

E
[
(ω′i)

21{ei is essential for ω}
(
4ap|f(ω)|p−2 + bp(ω

′
i)
p−2
)]

= 4apE[(ω′i)
2]E[Ln|f(ω)|p−2] + bpE[(ω′i)

p]E[Ln]

where Ln is the number of essential edges in the configuration ω. Let

y = E[|f(ω)|p](p−2)/p.
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Using Hölder’s inequality we have

yp/(p−2) = E[|f(ω)|p]
≤ 4apE[ω2]E[Lp/2n ]2/pE[|f(ω)|p](p−2)/p + bpE[ωp]E[Ln]

= 4apE[Lp/2n ]2/pE[ω2]y + bpE[Ln]E[ωp].

Now Lemma 3.5.3 with β = p/(p− 2) gives that

E[|f(ω)|p]2/p = yβ−1 ≤ 4apE[Lp/2n ]2/pE[ω2] + (bpE[Ln]E[ωp])2/p

or

E[|f(ω)|p] ≤ 2p/2−1(2ap)
p/2E[Lp/2n ]E[ω2]p/2 + 2p/2−1bpE[Ln]E[ωp].

Note that 2ap ≤ p and bp ≤ 2p−1pp−2. Hence simplifying we finally conclude that

E[|f(ω)|p] ≤ (2p)p/2E[Lp/2n ]E[ω2]p/2 + 2p/2(2p)p−2E[Ln]E[ωp].

Now we are done. �

It is easy to see that Ln(G) is smaller than the length of any length minimizing
path. In fact the random variable Ln(G) grows linearly with n. The following well-known
result due to Kesten [67] will be useful to get an upper bound on the length of a weight
minimizing path.

Corollary 3.5.5 (Proposition 5.8 in Kesten [67]). If F (0) < pc(d) then there exist constants
0 < a, b, c < ∞ depending on d and F only, such that the probability that there exists a
selfavoiding path P from the origin which contains at least n many edges but has ω(P) < cn
is smaller than ae−bn.

Combining Lemma 3.5.4 and Lemma 3.5.5 we have the proof of Proposition 3.5.1.

Proof of Proposition 3.5.1. Note thatGn = G for all n clearly implies that Ln(G)≤ 3nk
where k = k(G) is the number of edges in G. This completes the proof for the case where
the constants depend on G.

Let πn be the minimum number of edges in a weight minimizing path for tn(Gn).
To complete the proof it is enough to show the following: if Gn’s are subgraphs of Zd−1

and F (0) < pc(d) we have E[π
p/2
n ] ≤ cnp/2 for some constant c depending only on d, p and

F . We follow the idea from [68]. We have

P(πn > tn) ≤ P(tn(Gn) > ctn) + P(there exists a self avoiding path P
starting from 0 of at least tn edges but with ω(P) < ctn).

Now using Lemma 3.5.5 we see that the second probability decays like ae−btn. And the
first probability is bounded by P(Sn > ctn) where Sn is the weight of the straight line path
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joining (0, o) to (n, o). Clearly Sn is sum of n many i.i.d. random variables. Thus we have

E[πp/2n ] =

∫ ∞
0

np/2p

2
tp/2−1P(πn > tn) dt

≤
∫ ∞

0

np/2p

2
tp/2−1P(Sn > ctn) dt+

∫ ∞
0

np/2p

2
tp/2−1ae−btn dt

= c−p/2E[Sp/2n ] +
ap

2bp/2
Gamma(p/2) ≤ c1n

p/2

where the constant c1 depends on d, p and F . The result for an(G) and Tn(G) follow by
Lemma 3.3.1 that

E[|tn(G)− an(G)|p] ≤ E[|tn(G)− Tn(G)|p] ≤ E[(2Dω)p]

for all n,G when E[ωp] <∞ for some p ≥ 2 with ω ∼ F and D is the diameter of G. �

Proof of the first technical Lemma 3.5.2. For x, y ∈ R/{0}, x 6= y, let z = x/y. Then we
have

x |x|p−2 − y |y|p−2

(x− y)(|x|p−2 + |y|p−2)
=

z |z|p−2 − 1

(z − 1)(|z|p−2 + 1)
.

Now, the lemma follows from the fact that

cp := sup
z∈R

∣∣∣∣∣ z |z|p−2 − 1

(z − 1)(|z|p−2 + 1)

∣∣∣∣∣ ≤ max{1, (p− 1)/2}.

To prove this note that, by p > 2 we have

sup
z≥0

zp−1 + 1

(z + 1)(zp−2 + 1)
≤ 1

and

sup
z≥0

zp−1 − 1

(z − 1)(zp−2 + 1)
=

(
1− sup

x≥0

sinh p−3
p−1x

sinhx

)−1

=


(

1− p−3
p−1

)−1
if p > 3,

(1− 0)−1 if p ≤ 3

and the line can be written succinctly as max{1, (p− 1)/2}. �

Proof of the second technical Lemma 3.5.3. Define f(a, b) := (b+a1−1/β)1/(β−1) and g(a, b) :=
sup{y ≥ 0 : yβ ≤ a + by}. Without loss of generality assume b > 0. Then it is easy to see
that

g(a, b) = b1/(β−1)g(ab−β/(β−1), 1) and f(a, b) = b1/(β−1)f(ab−β/(β−1), 1).

So again w.l.g. we can assume that b = 1. Clearly f(a, 1) ≥ 1, g(a, 1) ≥ 1.
Let F : [1,∞) → R be the strictly increasing function F (x) := xβ − x. Note

that F (g(a, 1)) = a. Now y > f(a, 1) implies that yβ − y = F (y) > F (f(a, 1)) =
f(a, 1)(f(a, 1)β−1 − 1) ≥ a1/β(1 + a(β−1)/β − 1) = a. Hence the upper bound is proved.
�



70

3.6 Exponential edge weights

Here we will give a different proof for the variance bounds in Proposition 3.2.3
when the edge weights are exponentially distributed with mean one (without loss of gen-
erality). The proof is based on a property of Gaussian distribution. Note that if X,Y are
i.i.d. standard normal then (X2 + Y 2)/2 has Exp(1) distribution.

Let φN (z) := (2π)−N/2 exp(−||z||2/2), z ∈ RN be the density of theN -dimensional
standard Gaussian vector. For k = (k1, k2, . . . , kN ) ∈ ZN+ , define the k-th multivariate Her-
mite polynomial

Hk(x) := φN (x)−1

(
− ∂

∂x1

)k1
(
− ∂

∂x2

)k2

· · ·
(
− ∂

∂xN

)kN
φN (x)

and k! = k1!k2! · · · kN !. Then the following is a well known result in Gaussian process.

Theorem 3.6.1. The collection of polynomials {Hk | k ∈ ZN+} gives an orthogonal basis
in the Hilbert space of functions L2(RN , φN (x)dx) with inner product

〈f, h〉 :=

∫
RN

f(x)h(x)φN (x) dx = E[f(Z)h(Z)]

where Z is N -dimensional standard Gaussian random vector. Moreover we have

〈Hk, Hm〉 =

{
k! if k = m

0 otherwise

for all k,m ∈ ZN+ .

Using Theorem 3.6.1, for any L2 function f we have

E[f2(Z)] =
∑
k∈ZN+

1

k!
〈Hk, f〉2 or Var(f(Z)) ==

∑
k∈ZN+ \{0}

1

k!
〈Hk, f〉2

Now if f is once differentiable, using the fact that H2ei(z) = z2
i − 1 for 1 ≤ i ≤ N and

E[Zif(Z)] = E[ ∂f∂zi (Z)] we have

〈H2ei , f〉 = E[(Z2
i − 1)f(Z)] = E

[
Zi
∂f

∂zi
(Z)

]
.

In particular we have

Var(f(Z)) ≥ 1

2

N∑
i=1

(
E

[
Zi
∂f

∂zi
(Z)

])2

. (3.10)

Taking limits it is easy to see that the bound (3.10) holds for any absolutely
continuous function f . Now in our case N is the number of edges in [n]×G and the function
T = T0,n(G) of the edge weights ω = (ωi)

N
i=1 is absolutely continuous w.r.t. (xi, yi)

N
i=1 where

ωi = (x2
i + y2

i )/2. Let xi, yi be i.i.d. standard Gaussian. Then ωi’s are i.i.d. Exponentially
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distributed with mean one. Moreover by continuity, the minimum weight path P∗(ω) is
unique a.s. and we have

∂T (ω)

∂xi
= xi1{ei ∈ P∗(ω)}, ∂T (ω)

∂yi
= yi1{ei ∈ P∗(ω)} a.s.

for i = 1, 2, . . . , N . Hence from (3.10) we have

Var(T (ω)) ≥ 1

2

N∑
i=1

[(
E
[
x2
i1{ei ∈ P∗(ω)}

])2
+
(
E
[
y2
i 1{ei ∈ P∗(ω)}

])2]

≥ 1

4N

(
N∑
i=1

E
[
(x2
i + y2

i )1{ei ∈ P∗(ω)}
])2

=
1

N

(
N∑
i=1

E [ωi1{ei ∈ P∗(ω)}]

)2

=
1

N
(E[T (ω)])2 .

Now note that N ≤ 3nk where k is the number of edges in G and E[T (ω)] ≥ cn for some
c > 0 by Lemma 3.3.2. Thus we have the required lower bound. The upper bound follows
easily from the Poincaré inequality.

In fact, using hypercontractivity and a argument similar to the one used in [10]
one can prove that

Var(an(hn)) ≤ Cn

1 + log hn
.

This implies that for hn → ∞, an(hn) is noise sensitive and so any constant level Fourier
mass is negligible compared to the variance. Since our lower bound is based on the second
level Fourier mass, the lower bound is not tight when hn →∞.

3.7 Proof of Theorem 3.2.1

The proof of Theorem 3.2.1 will be given in several steps. First we will show that
it is enough to prove the CLT for Tn(Gn) after proper centering and scaling. Then we
will prove that Tn(Gn) is “approximately” a sum of i.i.d. random variables each having
distribution Tl(Gn) and an error term where l depends on n. Finally, using successive
breaking of Tl(Gn) into i.i.d. sums (the ‘renormalization steps’) and controlling the error in
each step, we will complete the proof. Recall that the notations an = O(bn) and an = o(bn),
respectively, mean that an ≤ Cbn for all n ≥ 1 for some constant C < ∞ and an/bn → 0
as n → ∞. Throughout the proof c will denote a constant that depends only on q, F and
whose value may change from line to line.

3.7.1 Reduction to Tn(Gn)

Let us first recall the setting. We have a sequence of nondecreasing graphs Gn
with Gn having diameter dn and kn edges. We also have kn = O(dθn) for some fixed θ ≥ 1.
Define

µn(G) := E[Tn(G)] and σ2
n(G) := Var(Tn(G))
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for any integer n ≥ 1 and any finite connected graph G.
Now from Lemma 3.3.1 we have

E[|an(Gn)− Tn(Gn)|p] ≤ 2pdpnE[ωp]

for all n when E[ωp] < ∞ for a typical edge weight ω. Moreover, from Proposition 3.2.3
we have σ2

n(Gn) ≥ cnk−1
n for all n for some absolute constant c > 0 when dn = o(n). Thus

when d2
n = o(nk−1

n ) (which is satisfied if dn = o(n1/(2+θ))), we have

Tn(Gn)− µn(Gn)

σn(Gn)
− an(Gn)− E[an(Gn)]

Var(an(Gn))1/2

L2

−→ 0.

Hence it is enough to prove CLT for (Tn(Gn) − µn(Gn))/σn(Gn) when dn = o(n1/(2+θ)).
From now on we will assume that

dn = o(nα) with α < 1/(2 + θ) fixed.

3.7.2 Approximation as an i.i.d. sum

In Lemma 3.7.1 we will prove a relation between side-to-side first-passage times
in large and small cylinders and this will be crucial to the whole analysis. Fix an integer n
and a finite connected graph G. Let n = ml + r with 0 ≤ r < l where l ≥ 1 is an integer.

We divide the cylinder graph [n]×G horizontally into m equal-sized smaller cylin-
der graphs R1, . . . , Rm with Ri = [(i − 1)l, il] ×G, i = 1, 2, . . . ,m each having width l and
a residual graph Rm+1 = [ml, n]×G. Let

Xi = T(i−1)l,il(G) (3.11)

be the side-to-side first-passage time for the product graph Ri for i = 1, 2, . . . ,m (see
Definition 3.2). We also define Xm+1 = Tml,n(G) for the residual graph Rm+1. Clearly
Xm+1 = 0 if r = 0. Note that Xi’s depend on n and G, but we will suppress n,G for
readability. We have the following relation. This is a generalization of Lemma 3.3.1.

Corollary 3.7.1. Let n,G be fixed. Let Xi be as defined in (3.11). Then the random
variable

Y := Tn(G)− (X1 +X2 + · · ·+Xm+1)

is nonnegative and is stochastically dominated by SmD where SmD is sum of mD many
i.i.d. random variables each having distribution F and D is the diameter of G. Moreover,
X1, . . . , Xm are i.i.d. having the same distribution as Tl(G), Xm+1 has the distribution of
Tr(G) and Xm+1 is independent of X1, . . . , Xm.

Proof. First of all, it is easy to see that Xi depends only on the weights for the edge set
{e : e is an edge in [(i− 1)l, il]×G} \ {e | e is an edge in {(i− 1)l}×G or {il}×G}. Thus,
X1, . . . , Xm’s are i.i.d. having the same distribution as Tl(G).

Now choose a minimal weight path P∗ joining the left boundary {0} × G to the
right boundary {n} × G (if there are more than one path one can use some deterministic
rule to break the tie). The path P∗ hits all the boundaries {il} × G at some vertex for
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i = 0, 1, . . . ,m. Let ui, vi, i = 0, 1, . . . ,m be the vertices in G such that for each i, P∗
hits {il} × G for the last time at the vertex (il, ui) and after that it hits the boundary
{(i+ 1)l} ×G at the vertex ((i+ 1)l, vi) for the first time (take (m+ 1)l to be n). Clearly
if P∗ hits {il} ×G only at a single vertex then ui = vi−1. Now the part of P∗ between the
vertices (il, ui) and ((i + 1)l, vi) is a path in [il, (i + 1)l] × G and hence has weight more
than Xi. But all these parts are disjoint. Hence we have Tn(G) = ω(P∗) ≥

∑m+1
i=1 Xi.

Now to prove upper bound for Y , let P∗i be a minimal weight path joining the left
boundary {il}×G to the right boundary {(i+1)l}×G and achieving the weight Xi. Suppose
P∗i hits {il}×G at (il, wi) and hits {(i+ 1)l}×G at ((i+ 1)l, zi) for i = 0, 1, . . . ,m. Let Pi
be a minimal length path in {il}×G joining (il, zi−1) to (il, wi) for i = 1, 2, . . . ,m. Consider
the concatenated path P∗0 ,P1,P∗1 ,P2, . . . ,P∗m joining (0, w0) to (n, zm+1). By minimality of
weight we have

Tn(G) ≤
m∑
i=1

(Xi + ω(Pi)) +Xm+1.

Thus we have Y = Tn(G) −
∑m+1

i=1 Xi ≤
∑m

i=1 ω(Pi). Clearly
∑m

i=1 ω(Pi) is a sum of∑m
i=1 d(zi−1, wi) many i.i.d. random variables each having distribution F where d(·, ·) is the

graph distance in Gn. But we have
∑m

i=1 d(zi−1, wi) ≤ mD by definition of the diameter.
Now F is supported on R+. Thus we are done. �

An obvious corollary of Lemma 3.7.1 is the following.

Corollary 3.7.2. For any integer m, l, r and connected graph G we have

|µml+r(G)− (mµl(G) + µr(G))| ≤ mDµ

and ∣∣∣σml+r(G)− (mσ2
l (G) + σ2

r (G))1/2
∣∣∣ ≤ mD(µ2 + σ2)1/2

where D is the diameter of G.

Proof. Taking expectation of Y in Lemma 3.7.1 with n = ml + r we have E[Y ] = µn(G)−
mµl(G)− µr(G) and 0 ≤ E[Y ] ≤ mDµ.

Moreover, we have∣∣∣Var(Tn(G))1/2 −Var(Tn(G)− Y )1/2
∣∣∣

= |‖Tn(G)− E[Tn(G)]‖2 − ‖Tn(G)− Y − E[Tn(G)− Y ]‖2|
≤ ‖Y − E[Y ]‖2 ≤ (E[Y 2])1/2 ≤ mD(µ2 + σ2)1/2.

Now the result follows since Tn(G)−Y =
∑m+1

i=1 Xi and Xi’s are independent of each other.
�
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3.7.3 Lyapounov condition

From here onwards, we return to using n in subscripts and superscripts. From
Lemma 3.7.1 and Corollary 3.7.2 clearly we have

E |Tn(Gn)− µn(Gn)− (X
(n)
1 +X

(n)
2 + · · ·X(n)

m −mµl(Gn))|

≤ E |Tn(Gn)− (X
(n)
1 +X

(n)
2 + · · ·X(n)

m+1)|+mdnµ+ E |X(n)
m+1 − µr(Gn)|

≤ 2mdnµ+ σr(Gn) (3.12)

where X
(n)
i , i = 1, 2, . . . ,m are defined as in (3.11) and n = ml + r. We will take

l = max{bnβc, 1} for some fixed β ∈ (2/(2 + θ), 1) and m = bn/lc.

Then we have d2
n = o(l) and all the lower and upper bounds on moments are valid for

Tl(Gn). The dependence of m, l on n is kept implicit. Note that 0 ≤ r < l. Moreover,
writing l − r in place of l and 1 in place of m, we get from Corollary 3.7.2 that

σr(Gn) ≤ σl(Gn) + (µ2 + σ2)1/2dn. (3.13)

Thus from (3.12) we have

E

∣∣∣∣∣Tn(Gn)− µn(Gn)√
mσl(Gn)

−
∑m

i=1(X
(n)
i − µl(Gn))√
mσl(Gn)

∣∣∣∣∣
≤ 2mdnµ+ σr(Gn)√

mσl(Gn)
≤ 1√

m
+ 3(σ2 + µ2)1/2

√
mdn

σl(Gn)
. (3.14)

Recall that we have l ∼ nβ for some β < 1 and thus m ∼ n1−β. From the lower bound for
the variance in Proposition 3.2.3 (as dn = o(l)) we have

md2
n

σ2
l (Gn)

≤ cm2d2
nkn

n
,

where c is some absolute constant. By our assumption on m, dn and kn we have m2d2
nkn =

o(n) when α ≤ (2β − 1)/(2 + θ) which is true for some β < 1 as α < 1/(2 + θ). Hence
(Tn(Gn)− µn(Gn))/

√
mσl(Gn) has the same asymptotic limit as∑m

i=1X
(n)
i −mµl(Gn)√
mσl(Gn)

(3.15)

as n→∞ when

α ≤ 2β − 1

2 + θ
for some β ∈

(
2

2 + θ
, 1

)
. (3.16)

Now X
(n)
i , i = 1, 2, . . . ,m are i.i.d. random variables with finite second moment,

hence by the CLT for triangular arrays it is expected that (3.15) has standard Gaussian
distribution asymptotically. However we cannot expect CLT for all values of β.
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Let s2
n := mσ2

l (Gn) be the variance of
∑m

i=1X
(n)
i . To use Lindeberg condition for

triangular arrays of i.i.d. random variables we need to show that

m

s2
n

E[T̃ 2
l 1{|T̃l| ≥ εsn}]→ 0 as n→∞

for every ε > 0 where T̃l = Tl(Gn) − µl(Gn). However, any bound using the relation
Tl(Gn) ≤ Sl where Sl is the weight of the straight line path joining (0, o) and (l, o), gives
rise to the condition θα ≤ 1 − 2β. The last condition is contradictory to (3.16). The
difficulty arises from the fact that the lower and upper bounds for the variances are not
tight.

Still we can prove a CLT by using estimates for the moments of T̃l(Gn) from
Proposition 3.5.1 and using a blocking technique which is reminiscent of the renormalization
group method. Note that Lindeberg condition follows from the Lyapounov condition

m

spn
E[|Tl(Gn)− µl(Gn)|p]→ 0 as n→∞ for some p > 2 (3.17)

and thus it is enough to prove (3.17) for some β ∈ (2/(2+θ), 1) where l = max{bnβc, 1}, m =
bn/lc, s2

n = mσ2
l (Gn). We also need to satisfy (3.16) to complete the proof of Theorem 3.2.1.

3.7.4 A technical estimate

We need the following technical estimate for the next “renormalization” step. The
lemma gives an upper bound on the moment of sums of i.i.d. random variables. It is known
as Rosenthal’s inequality (see [95]) in the literature.

Corollary 3.7.3. Let Yi, i = 1, 2, . . . ,m be i.i.d. random variables with mean zero and
E[Y p

i ] <∞ for some p ≥ 2. Then we have

E[|Y1 + Y2 + · · ·+ Ym|p] ≤ Ap(mE[Y p] + (mE[Y 2])p/2) (3.18)

where Ap is a constant depending only on p.

Proof. For simplicity we present the proof when p = 2q is an even integer. Let Y
d
= Y1 and

Sm = Y1 + · · · + Ym. For a = (a1, a2, . . . , a2q) ∈ Z2q
+ , we will denote

∑2q
i=1 ai by |a| and∑2q

i=1 iai by z(a). To estimate E[S2q
m ], we will use the following decomposition which is an

easy exercise in combinatorics. We have

E[S2q
m ] =

∑
a∈Z2q

+ :z(a)=2q

(2q)!∏2q
i=1 i!

aiai!
(m)|a|

2q∏
i=1

E[Y i]ai

where (m)k := m!/(m−k)! ≤ mk. Note that here we used the fact that Yi’s are i.i.d.. Since
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E[Y ] = 0 we can and we will assume that a1 = 0. Thus using Hölder’s inequality we have

E[S2q
m ] ≤

∑
z(a)=2q

(2q)!∏2q
i=2 i!

aiai!
(m)|a|

2q∏
i=2

E[|Y |i]ai

≤
∑

z(a)=2q

(2q)!∏2q
i=2 i!

aiai!
m|a|

2q∏
i=2

E[Y 2]
ai(q−i/2)

q−1 E[Y 2q]
ai(i/2−1)

q−1

≤
∑

z(a)=2q

(2q)!∏2q
i=2 i!

aiai!
(mq E[Y 2]q)

|a|−1
q−1 (mE[Y 2q])

q−|a|
q−1 .

Note that 2|a| ≤ z(a) = 2q as a1 = 0. Now using the fact that xαy1−α ≤ αx+ (1− α)y for
all x, y ≥ 0, α ∈ [0, 1] we finally have

E[S2q
m ] ≤ Aq(mE[Y 2q] +mq E[Y 2]q) (3.19)

where

Aq :=
∑

z(a)=2q

(2q)!∏2q
i=2 i!

aiai!

is a constant depending only on q. �

3.7.5 Renormalization Step

Now we are ready to start our proof of the Lyapounov condition. For simplicity
we will write Tl(G)− µl(G) imply as T̃l(G). Recall that

ν = lim
n→∞

E[Tn(Gn)]

n
.

Corollary 3.7.4. Suppose that ν > 0 and E[ωp] < ∞ for some p > 2 where ω is a
typical edge weight. Suppose either Gn = G for all n or Gn’s are subgraphs of Zd−1. Let
l = max{bnβc, 1}, dn = o(nα) with 2α < β and kn = O(dθn) for fixed θ ≥ 1. Suppose that
there exist t ≥ 1 real numbers βi, i = 1, 2 . . . , t such that 2α < βt < βt−1 < · · · < β1 = β
and we have

α ≤ 1− 2(βi − βi+1)− (1− βi)/q
2 + θ

for all i = 1, 2, . . . , t− 1,

and α ≤ q − 1

q
· 1− βt

θ

where q = p/2. Then we have∑m
i=1X

(n)
i −mµl(Gn)√
mσl(Gn)

w−→ N(0, 1)

as n→∞ where X
(n)
i ’s are i.i.d. with X

(n)
i

d
= Tl(Gn).



77

Proof. Since X
(n)
i , i = 1, 2, . . . ,m are i.i.d. with mean µl(Gn) and variance σ2

l (Gn) and
E[ωp] <∞ for some p > 2, we can use the Lyapounov condition to prove the central limit
theorem. We need to show that

m

spn
E[|T̃l(Gn)|p]→ 0 as n→∞

where s2
n = mσ2

l (Gn). By the variance lower bound from Proposition 3.2.3 we have

s2
n ≥ c1

ml

kn
≥ c2

n

kn
(3.20)

for some constants ci > 0 where kn is the number of edges in Gn. Using the moment bound
from Proposition 3.5.1 and lower bound on s2

n (note that d2
n = o(l)) we have

m

spn
E[|T̃l(Gn)|p] ≤ cpml

p/2

(n/kn)p/2
≤ cpml

p/2k
p/2
n

(ml)p/2
=

cpk
p/2
n

m(p−2)/2
.

Thus when kn = o(m1−2/p) or equivalently θα ≤ (1 − 2/p)(1 − β), we see that the right
hand side converges to zero and we have a central limit theorem. This proves the assertion
of the theorem when t = 1.

Let us now look into the bounds more carefully. The random variable Tl(Gn) itself
behaves like a sum of i.i.d. random variables each having distribution Tl′(Gn) for l′ < l. We
will use this fact to improve the required growth rate of kn. Let q = p/2 and assume that
there exist t ≥ 2 real numbers βi, i = 1, 2 . . . , t such that 2α < βt < βt−1 < · · · < β1 = β
and we have

α ≤ 1− 2(βi − βi+1)− (1− βi)/q
2 + θ

for all i = 1, 2, . . . , t− 1

and α ≤ q − 1

q
· 1− βt

θ
.

(3.21)

From now on we will write l1,m1 and β1 instead of l,m and β respectively. Recall that we
have l1 = max{bnβ1c, 1} and dn = o(nα). We will take

li = max{bnβic, 1},mi = bli−1/lic for i = 2, . . . , t.

The idea is as follows. First we will break the cylinder graph [0, l1] × Gn into m2 many
equal sized graphs each of which looks like [0, l2]×Gn. Then we will break each of the new
graphs again into m3 many equal sized graphs each of which looks like [0, l3] × Gn and so
on. We will stop after t steps. Our goal is to break the error term into smaller and smaller
quantities and show that the original quantity is “small” when each of the final quantities
are “small”. Throughout the proof q, t, θ, α, βi, i = 1, 2, . . . , t are fixed.

For simplicity, first we will assume that

l1 = m2m3 · · ·mtlt.

Under this assumption we have mili = li−1 for all i = 2 . . . , t. Otherwise one has to look
at the error terms which can be easily bounded using essentially the same idea and are
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considered in (3.29).

First Step. Let us start with the first splitting. We break the rectangular graph [0, l1]×Gn
into m2 many equal sized graphs [(i − 1)l2, il2] × Gn for i = 1, 2, . . . ,m2. Recall that we
have l1 = m2l2.

Let Sm2 =
∑m2

i=1Xi where Xi = T(i−1)l2,il2(Gn) − µl2(Gn). Recall that Xi’s are

i.i.d. having the same distribution as T̃l2(Gn) where T̃l(Gn) = Tl(Gn) − µl(Gn). Let ε1 =
ε1(n) := m1/s

2q
n . We need to show the Lyapounov condition:

ε1E[T̃l1(Gn)2q] = o(1). (3.22)

From Lemma 3.7.1 we have

E[|T̃l1(Gn)− Sm2 |2q] ≤ c(m2dn)2q E[ω2q]

for some constant c > 0. Moreover, Lemma 3.7.3 implies that

E[S2q
m2

] ≤ Aq(mq
2E[T̃l2(Gn)2]q +m2E[T̃l2(Gn)2q]).

Thus we have

ε1E[T̃l1(Gn)2q]

≤ c(ε1(m2dn)2q + ε1m
q
2E[T̃l2(Gn)2]q + ε1m2E[T̃l2(Gn)2q]).

Hence we need to show that

ε1(m2dn)2q = o(1), (3.23)

ε1m
q
2σ

2q
l2

(Gn) = o(1) (3.24)

and ε1m2E[T̃l2(Gn)2q] = o(1) (3.25)

Using the variance lower bound (3.20) we have

ε1(m2dn)2q ≤ cm1(m2)2q(d2
nkn)q

nq
≤ c

(
d2
nkn

n1−2(β1−β2)−(1−β1)/q

)q
.

Now (3.23) follows as d2
nkn = o(n(2+θ)α) and (2+θ)α ≤ 1−2(β1−β2)−(1−β1)/q. Moreover,

Corollary 3.7.2 with l1 = m2l2 implies that

(m2σ
2
l2(Gn))1/2 ≤ σl1(Gn) + cm2dn.

Thus using the definition of ε1 = ε1(n) and the fact that s2
n = m1σ

2
l1

(Gn) we have

ε1m
q
2σ

2q
l2

(Gn) ≤ c(ε1σ
2q
l1

(Gn) + ε1(m2dn)2q) ≤ c
(
m1−q

1 + ε1(m2dn)2q
)

and the right hand side is o(1) as q > 1 and by (3.23). So the only thing that remains to
be proved is that

ε1m2E[T̃l2(Gn)2q] = o(1).
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Induction step. From the above calculations in step 1 the induction step is clear. Define

εi = εi(n) =
m1m2 · · ·mi

s2q
n

for i ≥ 1.

Claim 1. We have εi(mi+1dn)2q = o(1) for all i < t.
Proof of Claim 1. Fix any i. Using definition of εi and the variance lower bound from
(3.20) we have

εi(mi+1dn)2q =
m1 · · ·mi(mi+1dn)2q

s2q
n

≤ c
n1−βim2q

i+1(d2
nkn)q

nq

= o

([
n(2+θ)α

n1−2(βi−βi+1)−(1−βi)/q

]q)
.

Now the claim follows by our assumption (3.21) that (2 + θ)α ≤ 1 − 2(βi − βi+1) − (1 −
βi)/q for all i < t.

Our next claim is the following.

Claim 2. We have εim
q
i+1σ

2q
li+1

(Gn) = o(1) for all i ≥ 1.
Proof of Claim 2. We will prove the claim by induction on i. We have already proved
the claim for i = 1 in (3.24). Now suppose that the claim is true for some i ≥ 1. Using
Corollary 3.7.2 for li+1 = li+2mi+2 we see that

εi+1(mi+2σ
2
li+2

(Gn))q ≤ c(εi+1σ
2q
li+1

(Gn) + εi+1(mi+2dn)2q)

= c(εimi+1σ
2q
li+1

(Gn) + εi+1(mi+2dn)2q).

Hence we have εi+1(mi+2σ
2
li+2

(Gn))q = o(1) by Claim 1 and the induction hypothesis as
q > 1. This completes the proof.

Claim 3. For any i ≥ 1, εiE[T̃li(Gn)2q] = o(1) if εi+1E[T̃li+1
(Gn)2q] = o(1).

Proof of Claim 3. Assume that εi+1E[T̃li+1
(Gn)2q] = o(1). We write T̃li(Gn) as a sum of

Smi+1 and an error term of order mi+1dn where Smi+1 is sum of mi+1 many i.i.d. random

variables each having distribution T̃li+1
(Gn). Using Lemma 3.7.3, as was done in the first

step, one can easily see that εiE[T̃li(Gn)2q] = o(1) when

εi(mi+1dn)2q = o(1), (3.26)

εim
q
i+1σ

2q
li+1

(Gn) = o(1) (3.27)

and εimi+1E[T̃li+1
(Gn)2q] = o(1). (3.28)

Now Condition (3.26) holds by Claim 1, Condition (3.27) holds by Claim 2 and Condition
(3.28) holds by the hypothesis as εi+1 = εimi+1.

Hence if we stop at step t, we see that the central limit theorem holds when
εtE[T̃lt(Gn)2q] = o(1). By the upper bound for the 2q-th moment from Proposition 3.5.1



80

(as d2
n = o(lt)) we see that εtE[T̃lt(Gn)2q] ≤ εtl

q
t and by the lower bound for the variance

from (3.20) we have

εtl
q
t ≤

cm1m2 · · ·mtl
q
t k
q
n

nq
=

ckqn
(m1m2 · · ·mt)q−1

= o

(
nqθα

n(q−1)(1−βt)

)
.

The last condition also holds by our assumption (3.21) that qθα ≤ (q− 1)(1−βt). Thus we
are done when l1 = m2m3 · · ·mtlt.

Now, in general we have li−1 = mili + ri for i = 2, . . . , t where 0 ≤ ri < li for all
i. Using the same proof used in the case when all ri = 0, one can easily see from Claim 3,
that we need to prove the extra conditions that

εiE[T̃ri(Gn)2q] = o(1) for all i = 2, 3, . . . , t. (3.29)

Fix i ∈ {2, 3, . . . , t}. If ri ≤ lt then we are done since εi ≤ εt and by Proposition 3.5.1 we
have E[T̃ri(Gn)2q] ≤ c(d2q

n + lqt ) ≤ c1l
q
t . The last inequality follows since 2α < βt. Now

suppose that lj+1 ≤ ri < lj for some j ≥ i. Since we have εi ≤ εj for j ≥ i working with ri
instead of lj and using the same inductive analysis used before we have the required result
(3.29). �

3.7.6 Choosing the sequence

To complete the proof of Theorem 3.2.1 we need to choose an appropriate sequence
(β1, . . . , βt) in (3.21) which will be provided by Lemma 3.7.5. Note that

1− 2(β0 − β1)− (1− β0)/q

2 + θ
=

2β1 − 1

2 + θ

for β0 = 1 and we have noted earlier in (3.16) that

an(Gn)− E[an(Gn)]

Var(an(Gn))1/2
has the same asymptotic limit as

∑m
i=1X

(n)
i −mµl(Gn)√
mσl(Gn)

when dn = o(nα) and α ≤ (2β1 − 1)/(2 + θ).

Corollary 3.7.5. Let β1, β2, . . . , βt be t real numbers satisfying the system of linear equa-
tions

1− 2(βi − βi+1)− (1− βi)/q
2 + θ

=
q − 1

q
· 1− βt

θ
(3.30)

for all i = 0, 1, 2, . . . , t− 1 where β0 = 1. Then we have

βi := 1− qθ(1− ri)
θ + (q − 1)(2 + θ)(1− rt)

(3.31)

for all i = 1, 2, . . . , t where r = 1− 1/(2q).
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Proof. Define xi = 1− βi for i = 0, 1, . . . , t. Clearly x0 = 0. Also define the constants

c =
q − 1

q
· 2 + θ

θ
and r = 1− 1

2q
.

Then the system of equations (3.30) can be written in terms of xi’s as

1− 2xi+1 + 2rxi = cxt for all i = 0, 1, . . . , t− 1

or xi+1 − rxi = (1− cxt)/2 for all i = 0, 1, . . . , t− 1. (3.32)

Multiplying the i-th equation by r−i−1 and summing over i = 0, 1, . . . , t− 1 we have

r−txt = qr−t(cxt − 1)(rt − 1) or xt =
q(1− rt)

1 + qc(1− rt)
.

Now solving (3.32) recursively starting from i = t− 1, t− 2, . . . , 0 we have

xi =
q(1− ri)

1 + qc(1− rt)
for all i = 1, 2, . . . , t.

Simplifying and reverting back to βi we finally get

xi = 1− qθ(1− ri)
θ + (q − 1)(2 + θ)(1− rt)

for all i = 1, 2, . . . , t. �

3.7.7 Completing the proof

Now we connect all the loose ends to complete the proof of Theorem 3.2.1.
Recall that the number of edges satisfies kn = O(dθn) and moreover we have dn =

o(nα) for some α < 1. We also have l ∼ nβ1 ,m ∼ n1−β1 for some β1 ∈ (α, 1). We
have proved in (3.16) that the CLT will follow if we can find some β1 ∈ (α, 1) such that
α ≤ (2β1 − 1)/(2 + θ) and ∑m

i=1Xi −mµl(Gn)√
mσl(Gn)

w−→ N(0, 1) (3.33)

as n→∞ where Xi’s are i.i.d. having distribution Tl(Gn). Note that (2β−1)/(2+θ) < β/2
for all β > 0.

To prove (3.33) we will use the condition in Lemma 3.7.4. Assume that E[ωp] <∞
for some real number p > 2. Let q = p/2. From Lemma 3.7.4 we see that CLT will hold in
(3.33) if there exist t ≥ 1 real numbers βi, i = 1, 2 . . . , t such that 2α < βt < βt−1 < · · · <
β1 < β0 = 1 and

α ≤ q − 1

q
· 1− βt

θ
and α ≤ 1− 2(βi − βi+1)− (1− βi)/q

2 + θ
(3.34)

for all i = 0, 1, . . . , t− 1. For i = 0 the equation reduces to α ≤ (2β1 − 1)/(2 + θ).
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Now fix any integer t ≥ 1. Define r = 1− 1/2q. For i = 1, . . . , t, define

βi := 1− qθ(1− ri)
θ + (q − 1)(2 + θ)(1− rt)

. (3.35)

As usual we will assume that β0 = 1. Clearly βt < βt−1 < · · · < β1 < β0. The sequence
(β1, . . . , βt) is the unique solution to the system of equations given by equality in the right
hand side of (3.34) (see Lemma 3.7.5). In fact we have

q − 1

q
· 1− βt

θ
=

(q − 1)(1− rt)
θ + (q − 1)(2 + θ)(1− rt)

and

1− 2(βi − βi+1)− (1− βi)/q
2 + θ

=
(q − 1)(1− rt)

θ + (q − 1)(2 + θ)(1− rt)
for any i = 0, 1, . . . , t− 1. Now note that

2(q − 1)(1− rt)
θ + (q − 1)(2 + θ)(1− rt)

< 1− qθ(1− rt)
θ + (q − 1)(2 + θ)(1− rt)

= βt

as θ + (q − 1)(2 + θ)(1 − rt) − (2(q − 1) + qθ)(1 − rt) = θrt > 0. Thus combining all the
previous results we have

an(Gn)− E[an(Gn)]√
mσl(Gn)

w−→ N(0, 1) as n→∞

when

α ≤ (q − 1)(1− rt)
θ + (q − 1)(2 + θ)(1− rt)

for some integer t ≥ 1. Since r = 1− 1/(2q) < 1, letting t→∞ we get the CLT when

α <
q − 1

θ + (q − 1)(2 + θ)
=

1

2 + θ + 2θ/(p− 2)
.

Thus we are done. �

3.8 The case of fixed graph G

By the arguments given in Section 3.2, we have a Gaussian central limit theorem for
an(G) and Tn(G) as n→∞ after proper scaling when G is a fixed graph. Proposition 3.2.2
says that

ν(G) := lim
n→∞

E[Tn(G)]

n
exists and is positive. Moreover, Proposition 3.2.3 gives that

0 < c1 ≤
Var(Tn(G))

n
≤ c2

for all n for some constants c1, c2 > 0 depending on G. The next lemma says that in fact
we can say more. Assume that v(G) is the number of vertices in G, k(G) is the number of
edges in G and D = D(G) is the diameter of G.
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Corollary 3.8.1. Let G be a finite connected graph. Then we have

|E[Tn(G)]− nν(G)| ≤ µD for all n

and the limit

σ2(G) := lim
n→∞

σ2
n(G)

n
exists and is positive.

Proof. Let µ̃n = µn/n and σ̃2
n = σ2

n/n. Using the proof given in corollary 3.7.2 we have

|nµ̃n − (mlµ̃l + rµ̃r)| ≤ mµD and
∣∣∣(nσ̃2

n)1/2 − (mlσ̃2
l + rσ̃2

r )
1/2
∣∣∣ ≤ mbD (3.36)

for all n = ml + r with 0 ≤ r < l where b = (µ2 + σ2)1/2. Thus for any m, k we have
|µ̃mk − µ̃m| ≤ µD/m. Reversing the roles of m and k, and combining, we see that for any
m, k, we have

|µ̃m − µ̃k| ≤ µD/k + µD/m.

Taking limits as k →∞ we have, for any m,

|µ̃m − lim
n→∞

µ̃n| ≤ µD/m.

For the variance, we take n = 2l in equation (3.36) to have

|σ̃2l − σ̃l| ≤ bD(2/l)1/2.

Hence, it follows that σ̃2k is Cauchy and limk→∞ σ̃2k exists.
Now take any l ≥ 1. There exists a unique positive integer k = k(l) such that

2l3/2 ≤ 2k < 4l3/2 (k(l) = 1 + dlog2 l
3/2e). Suppose 2k = ml + r where 0 ≤ r < l. Clearly√

l ≤ m ≤ 4
√
l. Now from (3.36) we have,∣∣∣(2kσ̃2

2k)1/2 − (mlσ̃2
l + rσ̃2

r )
1/2
∣∣∣ ≤ mbD.

Dividing by 2k/2 on both sides, we get∣∣∣∣∣σ̃2k −
(
σ̃2
l +

r(σ̃2
r − σ̃2

l )

ml + r

)1/2
∣∣∣∣∣ ≤ mbD√

ml + r
≤ 2bDl−1/4.

Note that k,m, r are functions of l in the above expression. Among these, m(l) ≥ l1/2 and
r(l) < l. Taking l→∞, and using the fact that the sequence {σ̃2

n}n≥1 is uniformly bounded
(see Proposition 3.5.1), we get that limm→∞ σ̃m exists and equals limk→∞ σ̃2k . Positivity
of the limit follows from the variance lower bound given in Proposition 3.2.3. �

Note that, if we consider the point-to-point cylinder first-passage time tn(G) in
[0, n]×G, the same results given in Lemma 3.8.1 hold for E[tn(G)] and Var(tn(G)).

Now we consider the process X(m) where X(m) = tm(G) − mν(G) for m ∈
{0, 1, . . .} and Xn(t) = Xm + (t − m)(Xm+1 − Xm) for t ∈ (m,m + 1). Note that when
G is the trivial graph consisting of a single vertex, X(n) corresponds to random walk with
linear interpolation and by Donsker’s theorem {(nσ2)−1/2X(nt)}t≥0 converges to Brownian
motion. The next lemma says that for general G we also have the same behavior. We
assume that E[ωp] <∞ for some p > 2 where ω ∼ F .
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Corollary 3.8.2. The scaled process {(nσ2(G))−1/2X(nt)}t≥0 converges in distribution to
standard Brownian motion as n→∞.

Proof. Consider the continuous process X ′ defined as X ′(n) := Tn(G) − nν(G) for n ∈
{0, 1, . . .} and extended by linear interpolation. By Lemma 3.3.1 it is enough to prove
Brownian convergence for {Yn(t) := (nσ2(G))−1/2X ′(nt) : 0 ≤ t ≤ T} for any fixed T > 0.
To prove the result it suffices to show that the finite dimensional distributions of Yn(t)
converge weakly to those of Bt and that {Yn} is tight.

First of all note that for any s > 0, we have

|Yn(s)− (nσ2(G))−1/2X(bnsc)| ≤ (nσ2(G))−1/2|X ′(1 + bnsc)−X ′(bnsc)|

≤ (nσ2(G))−1/2(Z + ν(G))
P−→ 0

where Z is the maximum of all the edge weights connecting {bnsc} ×G to {1 + bnsc} ×G,
which has the distribution of maximum of v(G) many i.i.d. random variables each having
distribution F . Thus it is enough to prove finite dimensional distributional convergence of
the process {Wn(t) := (nσ2(G))−1/2X ′(bntc)}t≥0. For a fixed t > 0, using Theorem 3.2.1

we have Wn(t)
w−→ N(0, t) since bntc/n→ t.

For 0 = t0 < t1 < t2 < · · · < tl < ∞, define Vi = Tbnti−1c,bntic(G) − (bntic −
bnti−1c)ν(G) for i = 1, 2, . . . , l. Clearly Vi’s are independent for all i. Moreover using
Lemma 3.7.1 we have

E[|Wn(ti)−Wn(ti−1)− (nσ2(G))−1/2Vi|]→ 0

as n→∞ for all i. Thus by independence and by CLT for (nσ2(G))−1/2Vi, we have

(Wn(ti)−Wn(ti−1))li=1
w−→ (Bti −Bti−1)li=1 as n→∞.

To prove tightness for {Yn(·)}, first of all note that certainly {Yn(0)} is tight as
Yn(0) ≡ 0. Also it is enough to prove tightness for {Wn(·)}. We will prove tightness via the
following lemma.

Corollary 3.8.3 (Billingsley [13], page 87-91). The sequence {Wn} is tight if there exist
constants C ≥ 0 and λ > 1/2 such that for all 0 ≤ t1 < t2 < t3 and for all n, we have

E[|Wn(t2)−Wn(t1)|2λ|Wn(t3)−Wn(t2)|2λ] ≤ C|t2 − t1|λ|t3 − t2|λ.

Using the Cauchy-Schwarz inequality and Proposition 3.5.1, it is easy to that
Lemma 3.8.3 holds with λ = p/4. Thus we are done. �

3.9 Numerical results

In this section we report some numerical simulation results which support Conjec-
ture 3.1.3 and 3.1.6. We consider two-dimensional rectangles [n]× [−hn, hn] with hn = nα

for hn ranging from 30 to 60 and α from the sequence 2/3, 1/2, 2/5 and 1/3. For the edge
weight distribution we take Bernoulli(p) for different values of p. For each configuration we
simulate 1000 observations for an(hn) to estimate the variance.
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We assume that there are two constants β, γ > 0 depending only on the distribution
of edge weights such that

Var(an(hn)) ≈ βnh−γn
for hn ≤ n2/3. Note that we have the rigorous result that γ ∈ [0, 1] if it exists. However it is
not clear how to define the approximation properly. Our conjecture is that γ exists in some
“appropriate” sense (for example the ratio of the logarithms of both sides are bounded) and
satisfies the following:

Conjecture 3.9.1. For two-dimension, we have

γ = 1/2

when hn = Θ(nα) and α ≤ 2/3.

To estimate the numbers β, γ we use the simple linear regression model

log Var(an(hn)) = log β + log n− γ log(hn) + Gaussian error

and least square estimates. The results are summarized in Table 3.1 and 3.2. For each α,
the first two columns show estimated values of γ and β. The third column gives the R2-
values for the linear fit. The row for a given value of p corresponds to taking Bernoulli(p)
as the edge-weight distribution. In figure 3.1 the estimated values of γ are plotted against
p for different values α, which shows that γ is close to 1/2 for all values of p.
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Figure 3.1: Plot of estimated value of γ vs. p for different values of α.

Figure 3.2 shows QQ plots based on the above simulation data for an(hn) for
n = h2

n = 55 against an appropriately fitted normal distribution, supporting the conjecture
of asymptotic normality. We will investigate asymptotic normality of an(hn) for hn � n2/3

in future research.
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p
α = 2/3 α = 1/2

γ estimate β estimate R-squared γ estimate β estimate R-squared

.55 0.59665 0.33373 0.9899 0.68224 0.38860 0.9890

.60 0.52898 0.34687 0.9936 0.50626 0.27719 0.9825

.65 0.54485 0.44715 0.9944 0.52052 0.33806 0.9902

.70 0.53255 0.48762 0.9939 0.47911 0.32135 0.9853

.75 0.49552 0.42032 0.9943 0.46539 0.31256 0.9850

.80 0.49639 0.42626 0.9913 0.47664 0.31795 0.9854

.85 0.48601 0.37961 0.9953 0.43500 0.24835 0.9897

.90 0.49857 0.35201 0.9952 0.48197 0.24066 0.9765

.95 0.48624 0.23308 0.9923 0.43909 0.13365 0.9887

Table 3.1: Simulation results for α = 2/3 and 1/2.

p
α = 2/5 α = 1/3

γ estimate β estimate R-squared γ estimate β estimate R-squared

.55 0.64363 0.32603 0.9954 0.61249 0.28677 0.9965

.60 0.51667 0.28690 0.9965 0.52718 0.28627 0.9964

.65 0.48483 0.29860 0.9950 0.51104 0.31453 0.9975

.70 0.51208 0.34944 0.9962 0.48300 0.30865 0.9972

.75 0.46182 0.30366 0.9968 0.48419 0.31650 0.9954

.80 0.52628 0.34583 0.9953 0.45275 0.27474 0.9964

.85 0.38531 0.20287 0.9967 0.44346 0.24726 0.9953

.90 0.45303 0.20414 0.9955 0.43682 0.18604 0.9970

.95 0.41627 0.11022 0.9949 0.39896 0.10018 0.9967

Table 3.2: Simulation results for α = 2/5 and 1/3.
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Figure 3.2: QQ plots based on simulation data for an(n1/2) for n = 3000 against an ap-
propriately fitted normal distribution for Bernoulli(p) edge weights, p = 0.6, 0.7, 0.8, 0.9 in
clockwise direction starting from top left.
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Chapter 4

Spectra of random linear
combinations of projection
matrices

4.1 Introduction

For a symmetric n × n matrix A, let λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) denote its
eigenvalues arranged in nonincreasing order. The spectral measure ΛA of A is defined as
the empirical measure of its eigenvalues which puts mass 1/n to each of its eigenvalues, i.e.,

ΛA =
1

n

n∑
i=1

δλi(A)

where δx is the dirac measure at x. In particular when the matrix A is random we have a
random spectral measure corresponding to A.

In his seminal paper [111] Wigner proved that the spectral measure for a large
class of random matrices converges to the semi-circular law, as the dimension grows to
infinity. Much work has since been done on various aspects of eigenvalues for different
ensembles of large real symmetric or complex hermitian random matrices. In many cases,
the random matrix has a simple linear structure. Moreover, there is also a big literature on
the asymptotic spectral measure of random matrices coming from Haar measure on classi-
cal groups (e.g., orthogonal, unitary, simplectic group). Some of the results are surveyed
in [53, 85]. The results are not only of interest to statisticians or to physicists but also to
mathematicians, because of it its relation to combinatorics, geometry and algebra.

Many new results have been proved in the last few years for understanding liming
spectral distribution of large random matrices having more complicated algebraic structure.
In [23] the authors considered the spectra of large random Hankel, Markov and Toeplitz
matrices, which was motivated by an open problem in [5] (see also [55]). We briefly describe
their result for Markov matrices.

Let {Xij : j ≥ i ≥ 1} be an infinite upper triangular array of i.i.d. random
variables and define Xji = Xij for j > i ≥ 1. Let Mn be the random n × n symmetric
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matrix given by

(Mn)ij =

{
Xij if i 6= j

−
∑

l 6=iXil if i = j.

Note that each of the rows of Mn has zero sum. Their result says the following:

Theorem 4.1.1 (Theorem 1.3 in [23]). Let {Xij : j ≥ i ≥ 1} be a collection of i.i.d. random
variables with E(X12) = 0 and Var(X12) = 1. With probability 1, Λn−1/2Mn

converges weakly
as n→∞ to the free convolution γM of the semicircle and standard normal measures. This
measure γM is a nonrandom symmetric probability measure with smooth bounded density
and does not depend on the distribution of X12 and has unbounded support.

Note that Mn = Xn − Dn where (Xn)ij = Xij and Dn is the diagonal matrix
with i-th diagonal entry given by

∑n
j=1Xij . By Wigner’s result Λn−1/2Xn

converges to

the semicircular law and each n−1/2(Dn)ii converges to i.i.d. standard Gaussian random
variable. Thus the result is intuitively clear, however it is hard to prove because of the
strong dependence between Xn and Dn. Now note that, Mn can also be written as follows

Mn =
∑

1≤i<j≤n
Xij(I − Pij)

where Pij is the permutation matrix (which is also a projection matrix) corresponding to
the permutation (i, j) that interchanges i and j.

Recently, in [43] the author considered linear combinations of matrices defined via
representations and coxeter generators of the symmetric group. The result is described in
Theorem 4.3.4. Here the matrices involved are all self-adjoint unitary matrices. However
it is easy to check that a matrix U is self-adjoint and unitary iff (I − U)/2 is a projection
matrix.

In many other cases also the random matrix, when it has a linear structure, can

be written as a linear function
∑

αXαM
(n)
α of i.i.d. random variables {Xα} where M

(n)
α ’s

are deterministic matrices. For example Wigner matrices can be written as
∑

i≤j XijM
(n)
ij

where M
(n)
ij is the n×n matrix with 1 at the (i, j) and (j, i)-th position and zero everywhere

else.
In this chapter, we are interested in the case when M

(n)
α ’s are affine transformation

of projection matrices, that is, M
(n)
α can be written as a linear combination of a projection

matrix and the identity matrix. Note that, the Markov random matrix example in [23] and
the result in [43] fall in this category.

Motivated by the result in [43] we will investigate sufficient conditions under which
the limiting measure exists and we also identify the limit.

Let X1, X2, . . . be a sequence of i.i.d. real random variables with E(X1) = 0 and
E(X2

1 ) = 1. Given n, suppose we have k = k(n) many n× n symmetric matrices

M
(n)
1 ,M

(n)
2 , . . . ,M

(n)
k .

Without loss of generality (by appropriate scaling) we will always assume that the spectral

radius of M
(n)
i is one for all i = 1, 2, . . . , k.
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Now consider the random matrix

An =

k∑
i=1

a
(n)
i XiM

(n)
i

where {a(n)
i } is a sequence of nonnegative real numbers. Let Λn = ΛAn be the spectral

measure of An. Clearly Λn is a random measure on R.
For a n× n symmetric matrix A define its trace norm by

‖A‖
tr

:=
1

n

n∑
i=1

|λi(A)|. (4.1)

where λi(A)’s are the eigenvalues of A (counting multiplicity). Our first result says that
the limit of Λn, if exists, is universal under minimal assumptions.

Lemma 4.1.2. Suppose ΛAn
w−→ Λ∞ (w.r.t. the topology of weak convergence of measures)

in distribution as n → ∞ where An =
∑k(n)

i=1 a
(n)
i ZiM

(n)
i , Zi’s are i.i.d. standard normal

random variables and Λ∞ is a random probability measure on R. Assume that

max
1≤i≤k(n)

∣∣∣a(n)
i

∣∣∣→ 0 and ‖a‖2 max
1≤i≤k(n)

∥∥∥M (n)
i

∥∥∥
tr

is uniformly bounded

as n → ∞. Then ΛBn
w−→ Λ∞ in distribution as n → ∞ where Bn =

∑k(n)
i=1 a

(n)
i XiM

(n)
i

and Xi’s are independent uniformly square integrable random variables with E(X1) = 0 and
E(X2

1 ) = 1.

For simplicity, we assume that all M
(n)
i ’s are projection matrices, that is(

M
(n)
i

)2
= M

(n)
i .

We also assume that Tr(M
(n)
i1
M

(n)
i2
· · ·M (n)

ik
) depends only on k, n when i1, i2, . . . , ik’s are

distinct integers such that M
(n)
i1
,M

(n)
i2
, . . . ,M

(n)
ik

commute with each other. Define µk(n) as

the above number Tr(M
(n)
i1
M

(n)
i2
· · ·M (n)

ik
). Our main result says the following.

Theorem 4.1.3. Assume that
k(n)∑
i=1

(
a

(n)
i

)2
= 1

and

max
1≤i≤k(n)

|a(n)
i | → 0,

∑
(i,j)∈En

(
a

(n)
i a

(n)
j

)2 → 0 as n→∞

where En := {(i, j) : M
(n)
i does not commute with M

(n)
j }. Also assume that

µ1(n)

n
→ θ and

µ2(n)

n
→ θ2 as n→∞
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for some real number θ ∈ [0, 1]. Let Λn be the empirical spectral distribution of

An =

k(n)∑
i=1

a
(n)
i ZiM

(n)
i

where Zi’s are i.i.d. standard Gaussian random variables. Then Λn converges in distribu-
tion (with respect to the topology of weak convergence of probability measures on R) to a
random distribution Λ∞ in probability where Λ∞ = νZ , Z is N(0, 1) and νz is the distribution
N(θz, θ(1− θ)).

In Section 4.2 we state the main results. We will provide several examples from
representation theory of symmetric groups in Section 4.3. Section 4.4 gives generalization
of results from Section 4.2. Finally in Section 4.5 we will prove the results.

4.2 Results

Let X1, X2, . . . be a sequence of i.i.d. random variables with mean zero and variance
one. Suppose we have a sequence of k many d×d symmetric matrices M = (M1,M2, . . . ,Mk)
and a sequence of real numbers a = (a1, a2, . . . , ak). We consider the random matrix

A =
k∑
i=1

aiXiMi.

Since A is symmetric all of its eigenvalues are real. Hence the empirical spectral measure
ΛA is a probability measure on the real line.

We will always assume that there is an underlying parameter n, such that k, d,M,a

all depend on n. We will write k(n), M(n),a(n), M
(n)
i , a

(n)
i , An instead of k,M,a, Mi, ai, A

respectively when the dependence on n need to be shown explicitly. Here we will investigate
the limiting behavior of ΛAn under appropriate assumptions as n→∞.

Before stating the result we need some definitions. Given a d × d matrix A we
define its mean trace by

Tr(A) =
1

d

d∑
i=1

Aii.

We also denote the L2 operator norm of A by

‖A‖ = sup{‖Ax‖2 : ‖x‖2 = 1} (4.2)

and its trace norm by

‖A‖
tr

= Tr(
√
A∗A). (4.3)

If λ1, λ2, . . . , λd are the d eigenvalues (which can be complex) of A counting multiplicity,
then we have ‖A‖ = max1≤i≤d |λi| and ‖A‖

tr
= 1

d

∑d
i=1 |λi|.

By changing the ai’s if necessary, w.l.g. we may assume that ‖Mi‖ ≤ 1 (any uniform
bound is enough) for all 1 ≤ i ≤ k, that is all the eigenvalues of Mi are in the interval [−1, 1].
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First we will prove that under quite general condition of the limiting spectral measure of
An is universal w.r.t. the distribution of X when it exists. Define

‖a‖ :=
(
a2

1 + a2
2 + · · ·+ a2

k

)1/2
,

cn = max
1≤i≤k

|ai| and bn = max
1≤i≤k

‖Mi‖tr
. (4.4)

Recall that, k,a, ai,Mi depend on n, so bn, cn depend on n too.

Lemma 4.2.1. Suppose ΛAn
w−→ Λ∞ (w.r.t. the topology of weak convergence of measures)

in distribution as n→∞ where An =
∑k

i=1 aiZiMi, Zi’s are i.i.d. standard normal random
variables and Λ∞ is a random probability measure on R. Assume that cn → 0 and

max
1≤i≤k

‖Mi‖ , ‖a‖2 bn are uniformly bounded

as n → ∞. Then ΛBn
w−→ Λ∞ in distribution as n → ∞ where Bn =

∑k
i=1 aiXiMi and

Xi’s are independent uniformly square integrable random variables with E(X1) = 0 and
E(X2

1 ) = 1.

In the classical Wigner ensemble or Markov random matrix case, k(n) ≈ n2/2, cn =
n−1/2, ‖a‖2 ≈ n and bn ≤ 2/n. In most of our later examples, we will have ‖a‖ = 1 and
cn = o(1) as n→∞ and so the result in Lemma 4.2.1 holds.

By Lemma 4.2.1 it is enough to prove the limits for standard Gaussian random
variables. In our examples Mi will be of the form aP + bI where P is a projection matrix,
I is the identity matrix and a, b are real numbers with |a+ b| ≤ 1.

Given a sequence M = (M1,M2, . . . ,Mk) of k matrices we define the “interaction
graph” of M as follows:

Definition 4.2.2. The graph G := ([k], E) with vertex set [k] and edge set E = {(i, j) :
MiMj 6= MjMi} is called the interaction graph of M.

We also define,

Definition 4.2.3. The sparseness of M w.r.t. the sequence a is defined as

N(a; M) =
∑

(i,j)∈E

a2
i a

2
j

where E is the set of edges in the interaction graph of M.

Note that if all ai’s are equal to k−1/2 then N(a; M) is k−2|E| and if all elements
in M commute with each other then G is the empty graph ([k],∅). So N(a; M) measures
the size of the interaction graph G(M) w.r.t. the weight sequence a. When needed, to stress
the dependence on n, we will write En, Nn instead of E,N(a(n); M(n)).

We say that condition A holds if

Condition A. For every integer s, t ≥ 0 there is a real number µs,t such that

∆s,t(n) := sup |Tr(Mi1Mi2 · · ·MisM
2
is+1

M2
is+2
· · ·M2

is+t)− µs,t| → 0 (4.5)
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as n → ∞ where the supremum is taken over all distinct i1, i2, . . . , is+t ∈ [k]s+t such that
Mi1 ,Mi2 , . . . ,Mis+t commute with each other.

In Lemma 4.4.1 we will show that if condition A holds then there is a random
vector (θ, γ) taking values in [−1, 1]× [0, 1] such that µs,t = E[θsγt] for all s, t ≥ 0.

Now we are ready to state our main theorem.

Theorem 4.2.4. Assume that ‖a(n)‖2 = 1,max |a(n)
i | → 0, N(a(n); M(n))→ 0 as n→∞.

Also assume that condition A holds with µs,t = E[θsγt] for some random vector (θ, γ) such
that γ ≥ θ2 a.s. Let Λn be the empirical spectral distribution of

An =

k(n)∑
i=1

a
(n)
i ZiM

(n)
i

where Zi’s are i.i.d. standard Gaussian random variables. Then Λn converges in distribution
(with respect to the topology of weak convergence of probability measures on R) to a random
distribution Λ∞ in probability where Λ∞ = νZ , Z is N(0, 1) and νz is the unconditional
distribution of Y where Y ∼ N(θz, γ − θ2) conditional on (θ, γ).

Note that, condition A is not very easy to check. But there is one case in which
it is easier to check that condition.

Lemma 4.2.5. Suppose that Mi’s are affine transformation of projection matrices. Suppose
that ∆1,0(n),∆2,0(n)→ 0 as n→∞ for some numbers µ1,0, µ2,0 where ∆s,t(n) is as defined
in (4.5). Suppose that µ2,0 = µ2

1,0. Also assume that Tr(Mi1Mi2 · · ·Mis) depends only on
s when 1 ≤ i1, i2, . . . , is ≤ k are distinct and Mi1 ,Mi2 , . . . ,Mis commute with each other.
Then condition A holds for all s, t ≥ 1.

The proof of Lemma 4.2.5 is an easy consequence of Lemma 4.4.1 using subsequence
argument. We also note that if Condition A is satisfied for Mi’s with µs,t = E[θsγt], then
Condition A is also satisfied for pI + qMi’s with µs,t = E[(p+ qθ)s(p2 + 2pqθ + q2γ)t].

We will use method of moments to prove convergence in distribution in Theo-
rem 4.2.4. For a nonnegative integer s, define

Λn(xs) =

∫
R

xsdΛn(x) = Tr(Asn).

First we show the following result. Recall that

Nn :=
∑

(i,j)∈E

a2
i a

2
j

where E = {(i, j) : i < j,MiMj 6= MjMi}. For noninteger t define µs,t = 0.

Lemma 4.2.6. Let s ≥ 1 be fixed. Then we have

E

(
Λn(xs)−

s∑
r=0

(
s

r

)
νs−rµr,(s−r)/2W

s−rYr

)2

≤ Cs(c2
n +Nn + max

0≤r≤s/2
∆s−2r,r(n))
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where

Wn =

(
k∑
i=1

a2
iZ

2
i

)1/2

and Yr(n) := r!
∑

1≤i1<i2<···<ir≤k

r∏
j=1

aijZij .

Now using standard results about convergence of Wn and Yr(n) we will complete
the proof of Theorem 4.2.4.

4.3 Examples

All our examples involve matrices arising from finite dimensional irreducible rep-
resentations of permutation group. Similar results can also be proved for other classical
Coxeter groups of which permutation group is one example and it will be developed in a
future research. Let Sn denote the permutation group on the set [n] := {1, 2, . . . , n}. We
will write the elements of Sn in cycle notation following the usual convention of omitting
cycles of length one, so that (1, 2) will denote the permutation that interchanges 1 and 2
while keeping other numbers fixed. We will denote the identity permutation by e.

Suppose that ρ is a d-dimensional unitary representation of Sn. That is ρ is a
group homomorphism from Sn to the group GLd(R), the group of d× d invertible matrices
so that ρ maps identity element to identity element and ρ(στ) = ρ(σ)ρ(τ) for all σ, τ ∈ Sn.

In order to describe the examples we need some basic results from the represen-
tation theory of symmetric groups. The results are available in any standard sources, such
as [44, 59, 77, 78, 99, 102]. First of all, following the arguments in [43] we will consider only
irreducible unitary representation ρ of Sn, as any unitary representation may be decom-
posed into a direct sum of irreducible representations. Secondly, as we are only interested in
the spectra, we need the equivalence class of the representation ρ, where two representations
ρ and π are unitarily equivalent if there is a unitary matrix U such that ρ(g) = Uπ(g)U∗

for all g ∈ Sn.
The equivalence classes of irreducible representations of Sn are indexed by the

partitions λ of [n]. A partition is a non-increasing sequence of integers λ = (λ1, λ2, . . . , λk)
with λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and |λ| := λ1 + λ2 + · · · + λk = n. We will use the
standard notation λ ` n to denote λ is a partition of n. Let ρλ be the irreducible unitary
representation indexed by λ. We first look at the dimension dλ of ρλ.

Any partition λ = (λ1, λ2, . . . , λk) ` n can be visualized as an “Young diagram”,
that is, a left-justified array of boxes with k rows, where the top or the first row contains
λ1 many boxes, the second row contains λ2 many boxes and so on. We number the boxes
using the usual matrix convention, so that (i, j) denote the j-th box in the i-th row, we
denote it by (i, j) ∈ λ. The hook length of the (i, j)-th box is defined as hij = 1+number of
boxes strictly right of the (i, j)-th box + number of boxes strictly below the (i, j)-th box.
The dimension dλ is then given by (see [102])

dλ =
n!∏

(i,j)∈λ hij
.

Given a partition λ ` n, its conjugate partition λ′ is defined by transposing the Young
diagram of λ, that is, λ′ = (λ′1, λ

′
2, . . . , λ

′
l) where l = λ1 and λ′j := max{i : (i, j) ∈ λ}.
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To describe the results we will use the following version of the Frobenius coordi-
nates of a Young diagram λ:

fm(λ) := max{i : (m, i) ∈ λ} −m+
1

2
(4.6)

gm(λ) := max{i : (i,m) ∈ λ} −m+
1

2
(4.7)

where m = 1, 2, . . . , r(λ) and r(λ) = max{k : (k, k) ∈ λ} is the length of the main diagonal

of λ. Note that fm(λ) = λm−m+1/2, gm(λ) = λ′m−m+1/2 and
∑r(λ)

m=1(fm(λ)+gm(λ)) = n.
Given a pair of sequences α = (α1, α2, . . .), β = (β1, β2, . . .) (finite or infinite),

define
pm(α, β) :=

∑
i≥1

αmi + (−1)m+1
∑
i≥1

βmi

for m ≥ 1. Also let σm denote the cyclic permutation (12 · · ·m) consisting of one cycle of
length m. The following result is from [66, Lemma 2, pp. 77].

Lemma 4.3.1. The following are equivalent for a sequence of partitions λ(n) ` n.

1. For each m ≥ 2 the limit limn→∞Tr(ρλ(n)(σm)) exists.

2. For each i = 1, 2, . . . the limits

lim
n→∞

fi(λ
(n))

n
= αi, lim

n→∞

gi(λ
(n))

n
= βi (4.8)

exist.

Moreover, if these conditions are satisfied then

lim
n→∞

Tr(ρλ(n)(σm)) = pm(α, β).

Note that the numbers αi and βi denotes, respectively, the frequencies of the boxes
in the i-th row and i-th column in the growing Young diagram and they satisfy

∑
i≥1 αi +∑

i≥1 βi ≤ 1. We also have the following result concerning asymptotic multiplicativity of
irreducible characters with respect to cycles.

Lemma 4.3.2. Suppose (4.8) holds. Then for any fixed permutation σ we have

lim
n→∞

Tr(ρλ(n)(σ)) =
∏
m≥1

(pm(α, β))km

where σ contains km cycles of length m in its disjoint cycle decomposition.

In fact, Thoma’s theorem (see [109]) states that all normalised irreducible charac-
ters of the infinite symmetric group S∞ = ∪n≥1Sn arises in the above way. Lemma 4.3.2
can be proved directly using the explicit expression for characters evaluated at a fixed per-
mutation (see [72, 73]). From now on we will assume that we have a sequence of partitions
λ(n) ` n satisfying (4.8).
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For n ≥ 1, let Cn(2) denote the conjugacy class of all two cycles in Sn, that is
Cn(2) = {(i, j) : 1 ≤ i < j ≤ n} ⊂ Sn. Note that |Cn(2)| = n(n− 1)/2. Define

Mi,j =
1

2
(I − ρλ(n)((i, j)))

for 1 ≤ i < j ≤ n. Since (i, j)2 = e, the identity permutation and ρλ(n) is a unitary
representation, we have

M∗i,j = Mi,j and M2
i,j = Mi,j

for all i < j. Hence Mi,j ’s are projection matrices. By Lemma 4.3.2, it is easy to see that
condition A is satisfied with µs,t = θs+t where θ = (1 − p2(α, β))/2. Now note that (i, j)
and (p, q) does not commute iff |{i, j} ∩ {p, q}| = 1. Thus we have the following result as a
corollary of Lemma 4.2.1 and Theorem 4.2.4. Also note the remark after Lemma 4.2.5.

Lemma 4.3.3. For n ≥ 1, let λ(n) ` n and let ρn be an irreducible unitary representation
of Sn corresponding to λ(n). Let Λn be the empirical spectral distribution of the random
matrix

An =
∑

1≤i<j≤n
a

(n)
ij Xij

(
pI + qρn((i, j))

)
where p, q are two fixed real numbers, Xij’s are i.i.d. random variables with mean zero and

variance one and {a(n)
ij : 1 ≤ i < j ≤ n} is a sequence of real numbers satisfying

∑
1≤i<j≤n

(
a

(n)
ij

)2
= 1 and

n∑
i=1

( n∑
j=1

(
a

(n)
ij

)2)2 → 0

as n→∞. Suppose that (4.8) holds. Then Λn converges in distribution (with respect to the
topology of weak convergence of probability measure on R) to a random probability measure
νZ where Z is standard Gaussian and νz is the distribution N((p+ qθ)z, q2(1− θ2)) where

θ =
∑
i≥1

α2
i −

∑
i≥1

β2
i .

One example where the above lemma is applicable is when all a
(n)
ij ’s are equal.

Note that, taking p = 0, q = 1 and a
(n)
ij = (n − 1)−1/2 when j = i + 1 and 0 otherwise, we

get back Theorem 1.1 in [43] which is stated in Theorem 4.3.4.

Theorem 4.3.4. For n ≥ 1, let λ(n) be a partition of some positive integer Nn. Let ρn be
an irreducible unitary representation of SNn corresponding to λ(n). Let Λn be the empirical
spectral distribution of the random matrix

1√
Nn − 1

Nn−1∑
k=1

Zn,kρn((k, k + 1)),

where Zn,1, Zn,2, . . . , Zn,Nn−1 are independent standard Gaussian random variables. Suppose
that Nn →∞ as n→∞ and

lim
n→∞

∑
i

(
λi
2

)
−
∑

j

(λ′j
2

)(
Nn
2

) = θ
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exists. Then Λn converges in distribution (with respect to the topology of weak convergence of
probability measures on R) to a random probability measure Λ∞ that is Gaussian with mean
θZ and variance 1 − θ2, where Z is a standard Gaussian random variable. In particular,
the (non-random) expectation measure E(Λ∞) is standard Gaussian.

Also taking q = 1, p = −θ it is easy to see that the random Gaussian mean part
(θZ) in the limiting distribution of Λn is coming from the nonzero trace of ρn((i, j))’s.

Now, we look at other conjugacy classes. The conjugacy classes of permutation
groups are indexed by cycle structures. Let Cn(2k23k3 · · ·mkm) denote the conjugacy class in
Sn of the permutations with ki many cycles of length i for i = 2, 3, . . . ,m. Let l =

∑m
i=2 iki.

Then it is easy to see that n−l|Cn(2k23k3 · · ·mkm)| converges to a constant as n→∞. Now
given a permutation σ, define its support to be the set

s(σ) = {i : s(i) 6= i}.

Clearly for σ ∈ Cn(2k23k3 · · ·mkm), |s(σ)| = l.
Let k1, k2, . . . , km be a fixed sequence of nonnegative integers. We consider the

congugacy class Cn = Cn(2k23k3 · · ·mkm) of Sn. For n ≥ 1, let λ(n) ` n and let ρn be
an irreducible unitary representation of Sn corresponding to λ(n). Also assume that λ(n)

satisfies condition (4.8). Define r = l.c.m.{i : ki > 0}. Then it is easy to see that r is the
order of any element of Cn, that is r is the smallest positive integer such that σr =id for
σ ∈ Cn. Also one can easily verify that the matrix

Mn(σ) =
1

r

r∑
i=1

(
I − ρn(σi)

)
is a projection matrix for σ ∈ Cn. Let [σ] denote the cyclic subgroup generated by σ.
Clearly Mn(σ) depends only on [σ]. Also note that τ ∈ [σ] and τ, σ are conjugates imply
that [τ ] = [σ] and s(σ) = s(τ). Now given n ≥ 1 consider the random matrix

An =
∑

[σ]∈Cn

a
(n)
[σ] X[σ]Mn(σ)

where the sum is over distinct cyclic subgroups with generator from Cn, X[σ]’s are i.i.d. r.v.’s

with mean zero and variance one, and {a(n)
[σ] } is a sequence of real numbers such that

∑
[σ]∈Cn

(
a

(n)
[σ]

)2
= 1

and ∑
[σ],[τ ]∈Cn,s(σ)∩s(τ)6=∅

(
a

(n)
[τ ] a

(n)
[σ]

)2
→ 0 as n→∞.

Then we have the following.

Lemma 4.3.5. Assume the conditions above. Let Λn be the empirical spectral distribution
of An. Then Λn converges in distribution (with respect to the topology of weak convergence of
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probability measure on R) to a random probability measure νZ where Z is standard Gaussian
and νz is the distribution N(θz, θ(1− θ)) where

θ = 1− 1

r

r∑
i=1

K(σi)

where σ is a permutation with ki many cycles of length i, i = 2, 3, . . . ,m and K(τ) is defined
as

K(τ) :=
∏
i≥1

(pi(α, β))li

where 2l23l3 · · ·mlm is the cycle structure of τ .

Clearly, the hypothesis of Lemma 4.3.5 is satisfied when all a
(n)
[σ] ’s are equal. As

another example, where the matrices involved are symmetric but not projection matrices,
we consider the case Mn(σ) = (ρn(σ) + ρn(σ−1))/2 for σ ∈ Cn. Here we redefine the
class [σ] = {σ, σ−1}. Then under the conditions stated in Lemma 4.3.5 (with the new
definition of [σ]) the same conclusion holds with νz the distribution N(θz, (1 + γ)/2 − θ2)
where θ = K(σ), γ = K(σ2) and σ is a permutation with ki many cycles of length i,
i = 2, 3, . . . ,m.

4.4 Generalizations

In the previous section we considered the case when all Mi’s have asymptotically
equal average trace. Here we generalize the result to the case when this is not the case. First
we define a notation. For an index t = (t1, t2, . . . , tc) ∈ Zc+ and a vector θ = (θ1, θ2, . . . , θc) ∈
Rc, define θt := θt11 θ

t2
2 · · · θtcc .

Fix a positive integer c. For every n, suppose we have a sequence of positive
integers k1(n), k2(n), . . . , kc(n) and for each i = 1, 2, . . . , c, suppose we have a sequence of

real numbers a
(n)
i,j , j = 1, 2, . . . , ki(n) and a sequence of matrices M

(n)
i,j , j = 1, 2, . . . , ki(n)

each with spectral radius smaller than 1. Assume that

c∑
i=1

ki(n)∑
j=1

(
a

(n)
i,j

)2
= 1

and for all i = 1, 2, . . . , c
ki(n)∑
j=1

(
a

(n)
i,j

)2
→ pi

as n→∞. Define the set En as

En := {((i, j), (k, l)) : M
(n)
i,j ,M

(n)
k,l does not commute}.

Assume that

max
1≤i≤c

1≤j≤ki(n)

|a(n)
i,j | → 0 and

∑
((i,j),(k,l))∈En

(
a

(n)
i,j a

(n)
k,l

)2
→ 0
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as n→∞.
Finally, instead of condition A we assume the following condition:

Condition B. For every sequence of integers s = (s1, s2, . . . , sc), t = (t1, t2, . . . , tc) there
is a real number µs,t such that

∆s,t(n) := sup

∣∣∣∣∣∣Tr

 c∏
i=1

si∏
j=1

M
(n)
i,f(i,j)

ti∏
j=1

(
M

(n)
i,g(i,j)

)2

− µs,t
∣∣∣∣∣∣→ 0 (4.9)

as n → ∞ where the supremum is taken over all distinct indices (i, f(i, j)), (i, g(i, j)),
1 ≤ i ≤ c, 1 ≤ j ≤ ki(n) such that the corresponding matrices commute with each other.

Before going to the main result of this section, let us state a lemma which identifies
the constants µs,t.

Lemma 4.4.1. Suppose condition B holds. Then there is a random vector (θ,γ) taking
values in [−1, 1]c × [0, 1]c such that µs,t = E[θsγt] for all s, t.

Our main result in this section says the following.

Theorem 4.4.2. Assume the conditions stated above. Also assume that condition B holds
with µs,t = E[θsγt] for some random vector (θ,γ). Let Λn be the empirical spectral distri-
bution of

An =

c∑
i=1

ki(n)∑
j=1

a
(n)
i,j Z

(n)
i,j M

(n)
i,j

where Z
(n)
i,j ’s are i.i.d. standard Gaussian random variables. Then Λn converges in dis-

tribution (with respect to the topology of weak convergence of probability measures on R)
to a random distribution Λ∞ in probability where Λ∞ = νZ ,Z is a c-dimensional stan-
dard normal random vector and νz is the unconditional distribution of Y where Y ∼
N(
∑c

i=1 piθizi,
∑c

i=1 pi(γi − θ2
i )) conditional on (θ,γ).

The proof follows the same line of proof used in the the proof of Theorem 4.2.4

and so we will omit the proof. Note that if all the matrices M
(n)
i,j are projection matrices or

affine transformations of projection matrices, then it is enough to prove for t = 0 to prove
condition B for all s, t. Moreover a result similar to Lemma 4.2.5 also holds here. Note that
Theorem 4.4.2 can be used to prove convergence results for matrices arising from random
linear combinations of group representations of symmetric matrices (as in Section 4.3), when
more than one conjugacy classes are involved.

Proof. First of all note that An can be written in the following way, by combining the terms
that involve the same product of Zσ’s,

An = N−1/2
n 2l−2k2

∑
[σ]:σ∈Cn

m∏
i=2

ki∏
j=1

Z(n)
σi,j

(
ρn(σi,j) + ρn(σ−1

i,j )

2
− θiI

)

where for σ ∈ Cn with disjoint cycles σi,j , 1 ≤ j ≤ ki; 2 ≤ i ≤ m, we define [σ] as the set of
two element sets (σi,j , σ

−1
i,j ), 1 ≤ j ≤ ki; 2 ≤ i ≤ m. �
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4.5 Proofs

For a positive integer c ≥ 1, define

νc =

{
(c− 1)(c− 3) · · · 1 if c is even

0 otherwise.

Clearly E[Zc] = νc where Z ∼ N(0, 1). For an index t = (t1, t2, . . . , tc) ∈ Zc+ and a
vector θ = (θ1, θ2, . . . , θc) ∈ Rc, define θt := θt11 θ

t2
2 · · · θtcc . Also define the size of t by |t| :=

t1+t2+· · ·+tc. We will write at instead of at1at2 · · · atc , Xt instead of Xt1Xt2 · · ·Xtc and Mt

instead of Mt1Mt2 · · ·Mtc . We will use the notation [n] to denote the set {1, 2, . . . , n}. For
the constants we will use the following convention: C,K, . . . will denote universal constants
that may change from line to line, Cs will denote constants depending only on s. We will
define other notations as we go along.

The following standard lemma will be useful. For completeness we give a short
proof.

Lemma 4.5.1. Let M1,M2, . . . ,Mk be a sequence of n× n matrices. Then we have

Tr(M1M2 · · ·Mk) ≤ ‖Mi‖tr
∏
j 6=i
‖Mj‖ for all 1 ≤ i ≤ k.

Proof. Let M1 = UDV be the singular value decomposition of M1 where U, V are unitary
matrices and D is a diagonal matrix consisting of absolute values of the eigenvalues of M1.
Let di be the i-th diagonal entry of D. For a matrix A define its max-norm by

‖A‖max = max
1≤i,j≤n

|aij |.

Then clearly we have (DA)ij ≤ |dii| ‖A‖max for all i, j ∈ [n]. Thus

Tr(M1M2 · · ·Mk) = Tr(DVM2 · · ·MkU)

=
1

n

n∑
i=1

dii(VM2 · · ·MkU)ii ≤
1

n

n∑
i=1

|dii| ‖VM2 · · ·MkU‖max .

Now it is easy to see that ‖A‖max ≤ ‖A‖ and ‖·‖ is submultiplicative. Hence simplifying
we have

Tr(M1M2 · · ·Mk) ≤ ‖D‖tr
‖VM2 · · ·MkU‖ ≤ ‖M1‖tr

∏
j 6=1

‖Mj‖ .

Since Tr(AB) = Tr(BA) the result is true for all i and we are done. �

Now we give a proof of Lemma 4.2.1. We use Steiltjes transform and the invariance
result from [26] to complete the proof.
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4.5.1 Proof of Lemma 4.2.1: Universality

For a probability measure µ on R, its Steiltjes transform is defined as the function

mµ(z) =

∫
R

1

x− z
µ(dx) for z ∈ C \R.

It is a standard fact in probability that, µn converges to µ weakly as n→∞ if and only if
mµn(z)→ mµ(z) as n→∞ for every z ∈ C \R. For a symmetric matrix A, let mA denote
the Steiltjes transform of the empirical spectral measure ΛA of A. It is easy to see that

mA(z) = Tr((A− zI)−1) for z ∈ C \R

where I is the identity matrix.
Hence to prove the lemma, it is enough to prove that

E[g(<(mBn(z)))− g(<(mAn(z)))]→ 0

and E[g(=(mBn(z)))− g(=(mAn(z)))]→ 0

as n→∞ for every g ∈ G, z ∈ C \R where G be the set of all thrice differentiable functions
g : R→ R such that |g(i)(x)| ≤ 1 for all x ∈ R and i = 1, 2, 3 where g(i) is the i-th derivative
of g. Here <(z),=(z) denote, respectively, the real and complex part of z. By similarity it
is enough to prove the first one.

Fix n ≥ 1 and z = u+ iv ∈ C \R where v 6= 0. Recall that

cn = max
1≤i≤k

|ai| and bn = max
1≤i≤k

‖Mi‖tr
.

Define the functions A : Rk → Rk×k, G : Rk → Ck×k and f : Rk → dR as follows

A(x) =

k∑
i=1

aixiMi, G(x) = (A(x)− zI)−1 and f(x) := <Tr(G(x))

where x = (x1, x2, . . . , xk) ∈ Rk. Clearly A,G, f are infinitely differentiable functions of x.
We also have

∂f

∂xi
= −ai<Tr(GMiG)

∂2f

∂x2
i

= 2a2
i<Tr(GMiGMiG)

and
∂3f

∂x3
i

= −6a3
i<Tr(GMiGMiGMiG)

for all i = 1, 2, . . . , k. Using Lemma (4.5.1) and the fact that ‖Mi‖tr
≤ bn ≤ 1, ‖Mi‖ ≤ 1

and ‖G(x)‖ ≤ |v|−1 for all x ∈ Rk, we have∣∣∣∣ ∂f∂xi
∣∣∣∣ ≤ bn|ai||v|−2,

∣∣∣∣∂2f

∂x2
i

∣∣∣∣ ≤ 2bna
2
i |v|−3 and

∣∣∣∣∂3f

∂x3
i

∣∣∣∣ ≤ 6bn|ai|3|v|−4
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for all x ∈ Rk. Thus using the Lindeberg technique from Theorem 1.1 of [26] we have

|E(g(<(mBn(z)))− g(<(mAn(z)))| = |E g(f(X))− E g(f(Z))|

≤ Cvbn
k∑
i=1

a2
i

[
E(X2

i ; |Xi| ≥ L) + E(Z2
i ; |Zi| ≥ L)

]
+ Cvbn

k∑
i=1

|ai|3
[
E(|Xi|3; |Xi| < L) + E(|Zi|3; |Zi| < L)

]
where Cv = 6 max{|v|−3, |v|−6}. Now using the fact that E[X2

i ] = E[Z2
i ] = 1 we have,

taking L = c
−1/2
n

|E(g(<(mBn(z)))− g(<(mAn(z)))|

≤ Cv ‖a‖2 bn
[

max
1≤i≤k

E(X2
i ; |Xi| ≥ c−1/2

n ) + E(Z2
1 ; |Z1| ≥ c−1/2

n ) + c1/2
n

]
. (4.10)

By our assumption that cn → 0 and ‖a‖2 bn is uniformly bounded as n→∞ the right hand
side of equation (4.10) converges to zero as n→∞. Thus we are done.

4.5.2 Proof of the main theorem: Theorem 4.2.4

Before delving into the proof let us recall some facts about Hermite polynomials
and multiple Wiener integeral (See [57, 88]). The Hermite polynomials Hn are defined by
the generating function

∞∑
n=0

tnHn(x) := exp

(
tx− x2

2

)
.

Equivalently,

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn
exp

(
−x

2

2

)
.

The polynomial Hn has degree n with leading coefficient 1
n! . If Z is a standard Gaussian

random variable, then

E[Hm(Z)Hn(Z)] =

{
1
n! , if m = n,

0, otherwise.

Let W be the usual white noise on [0, 1]. For an L2([0, 1]m) function g, define Im(g) to be
the multiple Wiener integral∫

[0,1]m
g(t1, t2, · · · , tm)W (dt1) · · ·W (dtm)

for m ≥ 1. Im is an continuous operator on L2([0, 1]m). For an L2([0, 1]) function f we
have n!Hm(W (f)) = Im(f⊗m) where f⊗m(t1, t2, · · · , tm) = f(t1)f(t2) · · · f(tm) and W (f)
is the Ito integral

∫ 1
0 f(t)W (dt).



103

Let us recall the setup first. Let Λn be the empirical spectral distribution of the
matrix

An :=
k∑
i=1

aiZiMi

where Zi’s are i.i.d. standard Gaussian random variables, Mi’s are d×d symmetric matrices
with ‖Mi‖ ≤ 1 and ‖Mi‖tr

≤ tn and {ai} is a sequence of real numbers with
∑k

i=1 a
2
i = 1.

We also have

cn := max
1≤i≤k

|ai| → 0 and Nn :=
∑

(i,j)∈E

a2
i a

2
j → 0

as n → ∞ where E = {(i, j) : i < j,MiMj 6= MjMi}. Moreover, by our assumption
condition A (4.5) is satisfied with µs,t = E[θsγt] for s, t ≥ 0. Fix an integer s ≥ 1. Using
Lemma 4.2.6 we have

E

(
Λn(xs)−

s∑
r=0

(
s

r

)
νs−rµr,(s−r)/2W

s−rYr

)2

≤ Cs(c2
n +Nn + max

0≤r≤s/2
∆s−2r,r(n))

where

Wn =

(
k∑
i=1

a2
iZ

2
i

)1/2

and Yr(n) := r!
∑

1≤i1<i2<···<ir≤k

r∏
j=1

aijZij .

To prove convergence of Λn(xs) we will use a coupling argument. Let n be fixed.

The grand coupling: Let W be a white noise on [0, 1]. For simplicity we define

b
(n)
i =

i∑
j=1

(
a

(n)
j

)2

for i = 1, 2, . . . , k to be the partial sum of the ai-squared. Define

Z
(n)
i :=

{
W ((b

(n)
i−1, b

(n)
i ])/a

(n)
i if a

(n)
i 6= 0

Xi if a
(n)
i = 0

for i = 1, 2, . . . , k(n) where Xi’s are i.i.d. N(0, 1) random variable independent of W . It is
easy to see that using the same white noise for all n this definition gives a valid coupling

of all the An’s. Note that Z
(n)
i always appears as a

(n)
i Z

(n)
i for all i = 1, 2, . . . , k(n). Hence

what really matters is the a
(n)
i 6= 0 case. Fix r, t ≥ 0. To find the limit of Λn(xs) we will

use the following standard lemma.

Lemma 4.5.2. Under the above coupling we have∑
1≤i1<···<ir<k(n)

r∏
i=1

a
(n)
ij
Z

(n)
ij
→ Hr(V )
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in L2 and hence in probability where V = W ((0, 1]) and Hr is the Hermite polynomial of
degree r.

Proof. For i = 1, 2, . . . , k(n), define the set Ai,n = (si−1,n, si,n] where

si,n =
i∑

j=1

(
a

(n)
j

)2
for 1 ≤ i ≤ k(n).

Recall the grand coupling. If we define the function

fn(x1, x2, . . . , xr) =
∑

1≤i1,i2,...,ir<k(n)
all are distinct

1Ai1,n×Ai2,n×···Air,n(x1, x2, . . . , xr) (4.11)

then we have ∑
1≤i1<···<ir<k(n)

r∏
i=1

a
(n)
ij
Z

(n)
ij

=
1

r!
Ir(fn) (4.12)

where Ir(f) is the multiple Wiener integral of f w.r.t. the white noise W . It is easy to see
that

||fn − 1(0,1]r ||22 ≤ Crc2
n (4.13)

where Cr is a universal constant depending only on r. Now note that

It(1(0,1]r) = r!Hr(W ((0, 1]))

where Hr is the Hermite polynomial of degree r. Now the proof is complete by L2-continuity
of the Ir operator. �

Clearly V ∼ N(0, 1). Now note that W 2
n =

∑kn
i=1(a

(n)
i Z

(n)
i )2 converges to 1 in

L2 under the condition cn = maxi |a(n)
i | → 0 as n → ∞. Hence W s

n converges to 1 in
probability for any s ≥ 0. Combining these results we have

Λn(xs)→
s∑
r=0

s!

(s− r)!
νs−rµr,(s−r)/2Hr(V ).

in probability. Define the function bs by

bs(z) =
s∑
r=0

s!

(s− r)!
νs−rµr,(s−r)/2Hr(z).

Recall that νs = E[Zs] where Z is a N(0, 1) random variable and µs,t = E[θsγt] if s, t are
nonnegative integers and zero otherwise. Thus we have

∞∑
s=0

bs(z)
xs

s!
= E

[ ∞∑
s=0

s∑
r=0

xsνs−r
(s− r)!

γ(s−r)/2θrHr(z)

]

= E

[( ∞∑
s=0

νsγ
s/2xs

s!

)( ∞∑
r=0

xrθrHr(z)

)]
.
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Now note that
∑∞

s=0 γ
s/2xsνs/s! = E[eγ

1/2xZ ] = eγx
2/2. And the second term in the product

can be written as

∞∑
r=0

θrxrHr(z) = exp
[
θxz − θ2x2/2)

]
.

Hence we have

∞∑
s=0

bs(z)
xs

s!
= E exp

[
xθz +

(
γ − θ2

)
x2/2

]
which we recognize as the moment generating function of a probabiliy distribution which
conditional on (θ, γ) is normal with mean θz and variance γ−θ2. This completes the proof.

Proof of Lemma 4.2.6. Fix s ≥ 1. Recall that ||a||2 = 1. We say that a random variable
X is “negligible” if E[X2] ≤ Cs(c

2
n + Nn). Consider the s-th moment under the spectral

measure Λn,

Λn(xs) =

∫
xsΛn(x) =

1

d
Tr(Asn) =

∑
i∈[k]s

aiZiTr(Mi). (4.14)

Here recall that xi is a shorthand for xi1xi2 · · · . Given an index set i = (i1, i2, . . . , is) define
the edge-labeled graph Hi = ([s], Ei) as follows:

(p, q) ∈ Ei iff (ip, iq) ∈ E or ip = iq

and the edge (p, q) is marked zero if ip = iq and one otherwise. For an edge labeled graph
H, Ĥ will denote the skeleton of H, the graph H without the edge labels. Let Cs be the
set of all graphs with vertex set [s] where each edge is labeled with either 0 or 1. Clearly

|Cs| = 3(s2). Since s is fixed, Cs doesn’t depend on n. Note that

Λ(xs) =
∑
H∈Cs

 ∑
i∈[k]s:Hi=H

aiZiTr(Mi)

 . (4.15)

We will prove the lemma in four steps.

First Reduction: First of all we will prove that the contribution from H ∈ Cs which has
at least one connected component of size 3 or more, is negligible. Fix H ∈ Cs such that H
has at least one component of size 3 or more. Recall that Tr(Mi) ≤ 1 for all i. Hence we
have

E

 ∑
i:Hi=H

aiZiTr(Mi)

2

≤
∑

i,t:Hi=Ht=H

|aiat| |E(ZiZt)| . (4.16)

Now note that E[ZiZt] = E
∏s
j=1 ZijZtj = 0 unless all indices ij , tj occur even number of

times. Also E |ZiZt| is uniformly bounded for i, t ∈ [k]s. Since Hi contains one component
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of size more than 3 either there are distinct p, q, r ∈ [s] such that ip = iq = is or there are
distinct p, q ∈ [s] such that ip 6= iq, (ip, iq) ∈ E. Hence we have

E

 ∑
i:Hi=H

aiZiTr(Mi)

2

≤ Cs

(
k∑
i=1

a2
i

)s−2
 ∑

(i,j)∈E

a2
i a

2
j +

k∑
i=1

a4
i


≤ Cs(Nn + c2

n). (4.17)

Second Reduction: From (4.17) we know that the main contribution comes graphs with
connected components of size at most two. Fix a H ∈ Cs. Suppose H has r components
of size one, p components of size two with label zero and q components of size two with
label one. Here we will prove that the contribution is negligible if q > 0. As before we have
E[ZiZt] 6= 0 only if all indices occur even number of times. Now, under the assumption
that q > 0, there are distinct l,m ∈ [s] such that il 6= im, (il, im) ∈ E. Hence

E

 ∑
i:Hi=H

aiZiTr(Mi)

2

≤ Cs

(
k∑
i=1

a2
i

)s−2 ∑
(i,j)∈E

a2
i a

2
j = C(s)Nn.

Third Reduction: Hence the main contribution comes from graphs H ∈ Cs whose
connected components are either of size one or of size two with label zero. Let r be the
number of components of size one and t be the number of components of size two in H.
Clearly s = r + 2t. Note that if Hi = H then σij ’s commute for all j ∈ [s]. Then the
number of connected graphs on vertex set [s] with r connected components of size one and t
connected components of size two is

(
s
r

)
νs−r, since there are

(
s
r

)
ways to choose the vertices

that will comprise the r connected components of size one and (2t − 1)(2t − 3) · · · 1 ways
to match the remaining 2t = s − r vertices into unordered pairs that will comprise the t
connected components of size two. Let Hr be the graph with vertex set [s] and edge set
{(r+ 2i− 1, r+ 2i) : i ≥ 1} and all the edge labels are zero. Then combining everything we
have

E

Λn(xs)−
s∑
r=0

(
s

r

)
νs−r

 ∑
i:Hi=Hr

aiZiTr(Mi)

2

≤ Cs(c2
n +Nn).

Fourth Reduction: Fix r ∈ [s] such that 2 divides s − r. Let 2t = s − r. Consider the
term

Y ′r :=
∑

i∈[k]s:Hi=Hr

aiZiTr(Mi)

=
′∑

(ip,iq)/∈ES for all 1≤p,q≤r+t

Tr(Mi)
r∏
j=1

aijZij

r+t∏
j=r+1

a2
ijZ

2
ij

where
∑′ denotes sum over distinct indices. Using condition A (eqn. (4.5)) we have

E |Y ′r − µr,tY ′′r |2 ≤ Cs∆s,t(n)
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where

Y ′′r =
′∑

(ip,iq)/∈ES for all 1≤p,q≤r+t

r∏
j=1

aijZij

r+t∏
j=r+1

a2
ijZ

2
ij

If we define

Y ′′′r :=

 ′∑
(ip,iq)/∈ES

r∏
j=1

aijZij

( k∑
i=1

a2
iZ

2
i

)t

calculations similar to the previous ones show that

E(Y ′′r − Y ′′′r )2 ≤ Cs

(
k∑
i=1

a2
i

)r+t−1
 ∑

(i,j)∈ES

a2
i a

2
j +

k∑
i=1

a4
i


= Cs(c

2
n +Nn).

Let

Yr :=
′∑

(ip,iq)/∈ES

r∏
j=1

aijZij .

and W =
√∑k

i=1 a
2
iZ

2
i . Then we have

E

[
Λ(xs)−

s∑
r=0

(
s

r

)
νs−rµr,(s−r)/2W

s−rYr

]2

≤ Cs(c2
n +Nn + max

0≤r≤s/2
∆s−2r,r). (4.18)

Now note that if we drop the condition {(ip, iq) /∈ ES} in the defining sum for Yr the result
(4.18) is still true. Combining all the results we have the proof. �

4.5.3 Proof of Lemma 4.4.1

Let us recall condition B first.

Condition B. For every sequence of integers s = (s1, s2, . . . , sc), t = (t1, t2, . . . , tc) there
is a real number µs,t such that

∆s,t(n) := sup

∣∣∣∣∣∣Tr

 c∏
i=1

si∏
j=1

M
(n)
i,f(i,j)

ti∏
j=1

(
M

(n)
i,g(i,j)

)2

− µs,t
∣∣∣∣∣∣→ 0 (4.19)

as n → ∞ where the supremum is taken over all distinct indices (i, f(i, j)), (i, g(i, l)),
1 ≤ j ≤ si; 1 ≤ l ≤ ti; 1 ≤ i ≤ c such that the corresponding matrices commute with each
other.
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We will use the solution of the multidimensional Hausdorff problem (cf. proposi-
tion 4.6.11 from [11]) to prove that there is a [−1, 1]c× [−1, 1]c valued random vector (θ,γ)
with θ = (θ1, θ2, . . . , θc),γ = (γ1, γ2, . . . , γc) such that

µs,t = E[θsγt]

for all s, t = (t1, t2, . . . , tc) ∈ Nc. The fact that γi ≥ 0 a.s. follows easily from a similar
calculation. For simplicity we only prove that

µs,0 = E[θs].

The general case follows by working with 2c classes and taking γi = θc+i for i = 1, 2, . . . , c.
Equip Nc with the usual partial order, i.e., p ≤ n if pi ≤ ni for all i = 1, 2, . . . , c.

The solution of the multidimensional Hausdorff problem says that, in order that
the numbers ψ(s) for s ∈ Nc are the multivariate moments of some [0, 1]c valued random
vector, a necessary and sufficient condition is that for all m,n ∈ Nc∑

0≤p≤n
(−1)|p|

(
n1

p1

)(
n2

p2

)
· · ·
(
nc
pc

)
ψ(m+ p) ≥ 0. (4.20)

If this is the case, with (θ1, θ2, . . . , θc) being the random vector, the sum appearing in (4.20)
is E[θm1

1 · · · θmcc (1 − θ1)n1 · · · (1 − θc)nc ]. Since we want to prove the existence of a [−1, 1]c

valued random variable it is enough to check the condition (4.20) with

ψ(t) :=
1

2|t|

∑
0≤s≤t

(
t1
s1

)(
t2
s2

)
· · ·
(
tc
sc

)
µs,0. (4.21)

This corresponds to the transformation f : [−1, 1] 7→ [0, 1] given by f(x) = (1 + x)/2.

Fix m,n. Choose n large enough so that we can find distinct indices (i, fn(i, j)),
1 ≤ j ≤ mi + ni; 1 ≤ i ≤ c such that the corresponding matrices commute with each other.
for every n fix such a sequence fn. Clearly we have

ψ(t) = lim
n→∞

Tr

 c∏
i=1

ti∏
j=1

1

2
(I +M

(n)
i,fn(i,j))

 (4.22)

for t ≤m+ n. By assumption all the matrices involved in (4.22) commute. Therefore the
matrices are simultaneously diagonalizable by a unitary matrix, say, Un. Let

D
(n)
i,j := U∗n ·

1

2
(I +M

(n)
i,fn(i,j)) · Un.

Clearly D
(n)
i,j ’s are diagonal matrices with all diagonal entries lying in the interval [0, 1].

Thus we have

ψ(t) = lim
n→∞

Tr

 c∏
i=1

ti∏
j=1

D
(n)
i,j
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for all t ≤m+ n. Now∑
0≤p≤n

(−1)|p|
(
n1

p1

)(
n2

p2

)
· · ·
(
nc
pc

)
ψ(m+ p)

= lim
n→∞

Tr
c∏
i=1

 ∑
0≤pi≤ni

(−1)pi
(
ni
pi

)mi+pi∏
j=1

D
(n)
i,j


= lim

n→∞
Tr

c∏
i=1

mi∏
j=1

D
(n)
i,j

ni∏
j=1

(I −D(n)
i,mi+j

)

 ≥ 0

for all m,n ∈ Nc. This completes the proof.
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