STEIN-CHEN METHOD FOR POISSON APPROXIMATION
ST414 (TERM 2, 2013-2014)

PARTHA DEY
UNIVERSITY OF WARWICK

Content.

Direct Poisson approximation for independent events.

Description of the Stein-Chen method.

Applications of the Stein-Chen method for classes of independent and dependent events.
Examples.

Objectives.

e Understand the principles of the Stein-Chen method.
e Apply the Stein-Chen method to examples.

Prerequisites.
e Expectation, independence, conditional distributions, Bernoulli indicator random variables. Pois-
son random variables.
e The course ST111 (Probability A) covers all of them and is essential for this course.
e ST318 (Probability Theory) might also help with various proofs and ideas, but is not mandatory.

Reading.
e Poisson approximation: Barbour, Holst and Janson, 1992. This course is based on a subset of
the book.
e Coupling and Poisson approximation: Janson, 1994. Survey paper.
e Lecture notes online after lecture.
e Example sheets at the end of the notes. Do these as you go along.
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1. INTRODUCTION

Stein-Chen method (named after Charles Stein and Louis Chen) was developed to show that the
probabilities of rare events can be approximated by Poisson probabilities. Just as common events can
often be approximated by the Normal distribution, we will see that probabilities associated with rare
events can often be modeled by the Poisson distribution. Stein-Chen method is a powerful, modern
technique which extends classical Poisson approximation results such as Poisson’s law of small numbers,
even to cases with dependence between events. There is a large literature on Stein’s method applied to
general distribution, but in this course we will only look at Poisson approximation. First we will describe
the classical result, and look at some motivating examples for why this might need extending?.

1.1. Laws of Large and small numbers. For the purpose of comparison first recall the law of large
numbers. Let X7, Xo,... be independent, identically distributed (i.i.d.) random variables with mean
E(Xl) = U.

Theorem 1.1 (Weak Law of Large Numbers). Asn — oo, for every e >0

1 n
P — X; — — 0.
Moreover if the variance Var(X;) = o2 is finite:
Theorem 1.2 (Central Limit Theorem). As n — oo,
1 n d
A=Y X —p | 5 N(0,6%).
i (A3 a) £ono

This explains why distributions that are approximately Normal are often observed. However, in the
context of rare events, the Poisson distribution is often observed. Recall that, Bin(n,p) is the binomial
distribution with parameters n and p, i.e.,

W ~ Bin(n,p) & P(W =k) = (Z)pk(l 7p)nfk

for k € {0,1,...,n}. Similarly, Poi()) is the Poisson distribution with parameter A, i.e.,

W ~Poi(A) & P(W =k)=e N/
for k € {0,1,2,...}.
Theorem 1.3 (Poisson law of small numbers). Let W ~ Bin(n,A/n), A > 0. As n — oo, for any
ke{0,1,2,...},

)\k

P(W =k) — e—AF = P(Poi()\) = k).

1.2. Applications. Consider n independent trials each with success probability p. Let W be the number

of successes ~ Bin(n,p). If n is large and p = A\/n is small, then W = Poi()). First we look at a real life
dataset.

(a) Horse kick data by Bortkewitch. Bortkewitch (1898) gathered 200 items of data, the number of
people kicked to death by horses each year for 10 corps in the Prussian army over a 20 year period.

No. deaths k | Freq. | Poisson approx. 200 x P(Poi(0.61) = k)
0] 109 108.67
1 65 66.29
2 22 20.22
3 3 4.11
4 1 0.63
5 0 0.08
6 0 0.01

Observations:
e Death by horse-kick in the Prussian army was a rare event. Median and mode are 0. The
average is A = 0.61.

IThese course note is based on Prof. Wilfrid Kendall’s course notes of the same name for 2007-08 spring term
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e You might expect deaths per corps per year to be independent, or weakly dependent.
e The data set is famous for being such a good fit for the Poisson distribution. This suggest
publication bias. Nonetheless the phenomenon is real.

(b) Treize. Treize is a simple card game studied by Montmort in 1713. Take a regular pack of 52 cards.
For simplicity, assume the cards are labelled 1,2,...,13; with four cards of each type.
e Draw 13 cards.
e Let X; =1 if the i-th card is of type i; otherwise 0.
e IsW = 21121 X, the total number of matches, approximately Poi(1)?
e Independence fails. The (X;) are positively related.

(¢) Occupancy problems.

Place m balls into n boxes.

Place each ball into box ¢ with probability p;, ¢ = 1,...,n; independently of the other balls.
Let X; =1 if box i is empty; 0 otherwise.

Is W approximately Poisson? Independence fails: the (X;) are negatively related.

(d) Nearest-neighbor statistics.

e Independently choose points Y7, ..., Y, uniformly at random in the unit square [0, 1]2.
Let |Y; —Y;| denote the distance between Y; and Y; with respect to toroidal boundary conditions.
Let X;; = 1if |Y; —Y;| <7 (r small); 0 otherwise.
Let W = Zi<j Xzy
Is W approximately Poisson? Independence fails: the (X;;) are positively related and weakly
dissociated.

By applying the techniques that we will prove in this course, we will show how Poisson approximation
can be applied in each of these examples and give some quantitative description of the approximation.
The idea is to prove Poisson approximation in a greater generality. The general idea being, the total
number of successes in a large number of trials in which each individual success is rare and the trials are
“weakly dependent”, is approximately Poisson.

Notation. We will write X ~ Ber(p) if
-
P(X=i)=4F "7
1—-p ¢=0.

Let X1,..., X, ~ Ber(p). Then W =" | X; ~ Bin(n, p). We will use E(f(W); A) for E(f(W)14) and
will reserve W as a random variable having Poi(\) distribution.
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2. POISSON APPROXIMATION FOR BINOMIAL DISTRIBUTION

We will now prove the Poisson law of small numbers (Theorem 1.3), i.e., if W ~ Bin(n, A/n) with
A > 0, then as n — oo,

)\k
P(W =k) — e*Aﬁ = P(Poi(\) = k).
Proof. 1t is an exercise to show that:
(1) exp(—p/(1 —p)) <1 —p <exp(—p) forall pe (0,1).

Thus
P(W = k) = (Z) (A/n)F(1 — A/n)nk

_n(n— 1)"}'{!(”* B (0 /n)E(1 = M) (1 — Ajm)
(1= A/n)" x %T x %n;y._n—kﬂ

x (1 —=X\/n)~*

For fixed k, as n — oo,
nn—1 n—k+1

—1, (1-Xn)k =1

n n n
Using (1),
A A
exp (—1 —/)7\1/71> <1-— . < exp(—A/n),
=) \ R
2 )< (1-2) <exp(=N).
exp ( = A/n) ( n) exp(—A)
By the sandwich principle (1 — %)n — exp(—A) as n — oo. |

By adapting the argument above, we can produce a slightly more general result. Let (p, : n > 1)
denote a sequence of positive numbers.

Theorem 2.1. If np, — A as n — oo, for any fized non-negative integer k
P(Bin(n,p,) = k) = P(Poi(\) = k) as n — 0.

These results suggest that Poi(np) is a good approximation for Bin(n,p) for large n and small p. How
good is the approximation? Let

4 - EB@Bin(np)=k) J(1-1/n)...(1~(k—1)/n)exp(np)(1 —p)" Tk if0<k<n
n,p,k = P(Poi(np) = k) o kS
Then
— j/n D
= - o — )2
App i = €xp 2T +np—(n— k) —
k—1
—exp | - N )/ A exp (_ k(k—1) (k — np)p>
= l-p 2(n —k+1) 1—p
and
k—1
-1
An,p,kz < exp | — l +np — (n — k)p < exp (_ (k ) + kp)
j=1 n 27’L

Theorem 2.2. If0 < k < n,
k(k —1) (k — np)p>

P(Poi(np) = k) exp <_2(n "kt 1) 1—p
< P(Bin(n, p) = k)

< P(Poi(np) = k) exp (—k(kQ;D + kp) .

Note that the bounds are not the best possible and only works for sum of independent Bernoullis. We
need a good way to measure the distance between Bin(n,p) and Poi(np) over the whole of Z?
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3. TOTAL-VARIATION DISTANCE AND COUPLING

We have obtained bounds for Bin(n, p) probabilities in terms of Poi(np) probabilities. In what follows
however, it will be useful to define a single measure of how apart two distributions are.

Definition 3.1. Let P and @ denote two probability measures on Z,. The total-variation distance
between P and Q is defined as

d1v(P.Q) = suwp (P(4) - Q(4))

ACZ.,
= 23 1PH) - Q).
k=0

The second form is obviously symmetric. It is an exercise to show that the two forms are equivalent
and that therefore
sup (P(A) —Q(A)) = drv(P,Q) = drv(Q, P) = sup (Q(A) — P(A))
ACZ, ACZy
Convergence of probabilities implies total variation distance converging to zero (exercise). Theorem 2.2
can be used to bound above drv(Bin(n,p), Poi(np)). The following table compares the resulting bound
with the bound we will obtain using the Stein-Chen method.

n | dry(Bin(n,5/n),Poi(5)) | Direct calculation bound | Stein-Chen bound
10 0.172 1.345 0.5

20 0.071 0.478 0.25

30 0.045 0.291 0.16666667

40 0.033 0.209 0.125

50 0.026 0.163 0.1

3.1. Coupling. Given two distributions P and @, a coupling between P and () is a joint distribution
(X,Y) ~ p such that marginally X ~ P and Y ~ Q. We will use the word “coupling between X and Y”
to mean “coupling between the distribution of X and the distribution of Y.

Consider the results of two unbiased coin flips: X,Y ~ Ber(1/2). How can they be coupled together?
For any « € [0, 1], consider the following joint probabilities:

X\Y [0 1
0 La 11-0)
1 g(l - ) ga

e If & = 1/2, the random variables are independent.
e If @ > 1/2, the random variables are positively correlated.
o If @ < 1/2, the random variables are negatively correlated.
Note that dry(X,Y) =0: X and Y can be coupled perfectly. This corresponds to the case a = 1. In
fact we have the following result:

Lemma 3.2. Let P,Q be two distributions on Z,. We have
drv(P,Q)= inf PX#Y
w(P.Q) = inf B(X#Y)

YY)~

where the infimum is over all coupling p of P and Q.

Proof. 1t is easier to show that
P(A) = Q(A) < P(X #Y)
for any set A and any coupling (X,Y) ~ u of P and @, by noting that
PA)=P(XecA)=PXecAYZA+PXecAYecA

SPXAY)+PY € A)=PX #Y)+Q(A).

Thus we have
drv(P,Q) < inf P(X #Y).

rv(P.Q) < inf (X #Y)
To show the equality we have construct a coupling that achieves the lower bound. Thus we try to
construct a joint distribution for X,Y that maximizes the probability that they are equal. Clearly, the

best we can do is, for each value k € Z,, to make X =Y = k with probability min{P(k), Q(k)} and
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redistribute the remaining mass. Let Ay = {k: P(k) > Q(k)} and A_ = {k : P(k) < Q(k)}. Note that
Ay NA_ = and

Y (P(R) = Qk) = > (Qk) — P(k)) = %Z |P(k) — Q(K)|.
k

k€A kEA_
Define )
0= 5 P - (k)
We define the joint distribution as follows:
min{P(k), Q(k)} ifk=1
P(X =kY=1)= %(P(k) —QENQUI)—P() ifkeA;le A
0 otherwise.

Note that for k ¢ A, we have P(X = k) = min{P(k),Q(k)} = P(k) and for k € A,
P(X = k) = Q(k) + P(k) — Q(k) = P(k).
Similarly, P(Y =1) = Q(I) for all I. Thus (X,Y) is a coupling of P and Q. Moreover,
P(X#Y) == 3 |P(k) - Q(k)|
k

This completes the proof. |

Thus, finding total variation distance is equivalent to finding the best coupling in terms of maximizing
the “agreement probability”. We will come back to coupling later in dealing with Stein-Chen method.
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4. SUMS OF GENERAL INDEPENDENT BERNOULLI RANDOM VARIABLES
We will now consider the case when X; ~ Ber(p;),s =1,2,...,n are independent and
n n
W= ZX,- with X := E(W) = Zpi.
i=1 i=1

The following calculation is extremely ugly and goes to show that we need a better method.
calculation is not needed for the subsequent developement.)

/
Let > denote El<i1<i2<---<ik<n' Then

/

/ k n k
P(W=k) =) Hpvz,. II a-») :Hlfpzz H

J¢{i1,- ik} j=1
Thus
AF ( )
(2) P(Poi(A) = k) —P(W =k) = e 1 —p;
(3)

L

VI
(4) Hlfpz Hp H

Looking first at (2):

0<e ™~ H(l —pi)=e? (1 - H(l —pi)epi>
i=1 i

< *AZ (1 —(1—p;)eP?)
*AZ (1-p7)) Asz < Ae™* maxp;.

— i

Hence
0 < (2) < P(Poi(N\) = k)A max p;.

Secondly, writing AF = Y77 - - > i1 D, we see that

/ n n k-2 n
0N =3 Hlpm‘ < @) Z;p? <Z;pi> = (S) Ak2 z;pf < (S) MU maxp,
J= 1= 1= 1=

(This

S0
0 < (3) < P(Poi(A) = k) (’;) A~ max pr.
Thirdly,
/ p k 1 D k
0<> Hl_lj 11w | <> H1_Z].. 1-JJa-pi)
j=1 pi; S5 j=1 pi; i1
/ k D k / k p
< Z H 1 _lj _ (szJ < Z H 1 _ZJ : k max p;
j=1 pi; j=1 j=1 Di;
SO

—kP(W = k)maxp; < (4) <O0.
Collecting the above gives:
Theorem 4.1. If W =X, +---+ X,,, X; ~ Ber(p;) and A =), p;,
k(k

[B(W = k) — B(Poi(}) = k)| < max { (A B

‘1)> P(Poi(A) = k), kP(W = k)} $maxp;.
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Corollary 4.2. We have
drv (W, Poi()N)) < Z)\maxpl-.

Proof. Note that

E(POL(A)) = Ak /R,

Summing over k, we have

];) IP(W = k) — P(Poi()) = k)| < ()\ + %E(W(W — 1)+ IE(W)) -maxp; = g)\mlaxpi

where W ~ Poi(A). Recall that

dry (W, Poi(\)) = 5 Y [P(W = k) — P(Poi(\) = k).
k=0

DO =

The result follows. n

Thus W is close to Poi()) in total-variation if A max; p; is small. This holds if, for example max; p; ~
n~'/2. For independent summands, (4.1) can be improved upon using complex analysis. We will head in
a different direction, because we want to be able to deal with dependent summands as to produce sharper
results.
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5. THE STEIN-CHEN METHOD

First we will explain the intuition behind Stein-Chen method and then we will go into the rigorous
estimates and details in the next Section. To show that a random variable W is close to a Poisson
distribution with mean A we need to show that

drv (W, Poi(X)) := Asg%) (P(W € A) — P(Poi(\) € A))

is small. It is impossible to exactly evaluate the probability and bound the differences in probability
directly, except in the independent case. The main idea is to write P(W € A) — P(Poi(\) € A) as
expectation of some other function which is easy to bound directly. First we will show that Poi())
distribution is characterized by the following operator (called the Stein characterizing operator)

Axg(n) = Ag(n+1) —ng(n),n 20

for g : Z4 — R, in the sense that a r.v. X is Poi(\) iff E(A,g(X)) =0 for all g : Z, — R bounded. This
is the content of Lemma 5.1.

Lemma 5.1 (Stein characterizing equation for Poisson distribution). A non-negative integer valued
random variable X is Poi(\) if and only if

E(Ag(X +1) — Xg(X)) =0
for every bounded function g : Z, — R.

This suggest that if we want to show that a random variable W is approximately Poi()), we should
show that E(Ag(W +1) —Wg(W)) & 0 for bounded functions g. Our next goal is to solve the equation
Ayg = f for a given bounded function f with E(f(W)) = 0,W ~ Poi(\). In Lemma 5.2 we will show
that there is indeed a unique bounded solution.

Lemma 5.2. If f : Z, — R satisfies E(f(W)) = 0 where W ~ Poi(\) and is bounded then there is a
unique bounded function g such that

f(n) =Ag(n+1) —ng(n) for alln > 0.
Moreover, g is given by g(O) =0 and

n—1) e k WyEW <n

Z A forn > 1.
k=0 kit nP(W =n)

The rest of the Stein-Chen method involves looking, for A C Z and X > 0, at functions g4, defined
as follows.

Definition 5.3 (The Stein approximating equation). Let A C Z4 and A > 0. The function g4 x : Z+ — R
is defined as the unique bounded function satisfying

)\gA,,\(n + 1) — ngA,A(n) =Tpea — P(POI()\) S A)
By Lemma 5.2 the function g4 ) exists and is unique. We will also prove that,

Theorem 5.4. For all ACZ,,
. 1
sup|gar(n+1) — ga(n)| < min {1, /\} .
n>1

Now we have

dry (W, Poi(X)) := sup E(Axgar(W))
ACZ.,

and bounding the expectation (the main part of Stein-Chen method) will give the required bound. Let
us now explain the last part in the case when
W =Y X;, X;~Ber(p), A=Y pi=EW), W ~Poi(\).
icl i
Notice that the definition of g4 » depends on A and A but not on the distribution of W. We are trying
to show that W is approximately Poisson. Putting W into the approximating equation,
/\gA’)\(W + 1) - WgA,)\(W) =1lwea — P(W S A)
Taking expecations,

EAgar(W +1) = Wgarx(W)) =P(W € A) —P(W € A).
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We therefore want to bound

sup [E(Aga(W +1) = Wgax(W))[.
ACZ,

5.1. The independent case. For starters, assume that the X; are independent Bernoulli r.v.s. Let
Vi=W-X;, =) X,
J#i
Then
E(Xigaa(W)) = E(Xsgaa(Vi + Xi)) = piE(ga(Vi +1)).
Therefore
EAgarx(W +1) = Wga (W) = ZE(pigA,/\(W +1) = Xigaa(W))
i

= ZpiIE(gA’A(W +1) = gax(Vi +1)).

Note that for integers m,n, we have

[f(m) = f(n)] < sgplf(kJr 1) = f(B)] - [m —nl|.

Hence
[P(W € A) —P(W € A)| = [E(Agax(W +1) — Wya, A<W>>|
<SUplga(n 1)~ gax(n szlE\W 14
:min{l,l/)\}~2p?.
Thus

dry (W, Poi(\)) < min {1,1/A}- ) p;
< min{A, 1} - max p;.
7
Compare this with the (4.2) bound of 2\ max; p;.
Example 5.5 (The binomial distribution). Applying this bound to the Binomial distribution gives

drv (Bin(n, p), Poi(np)) < min{np, 1}p = min{p, np?}.
Example 5.6. W =" | X; with X; ~ Ber(i/n?). Then with A = ("3")/n?,

2, 4 _ nn+1/2)(n+1) 1 1 1
drv (W, Poi(A Zz/ i =3, 1—|—2 1—|—n .

If the X;’s are not independent, the definition of the V;,i € I has to be defined in terms of a coupling
(see Section 3.1). Moreover, the coupling should be chosen to minimize E|W — V;|. Thus to apply the
Stein-Chen method we will need to be able to find couplings that are as close as possible. Consider
X ~ Bin(100,p), Y ~ Bin(101, p). A simple coupling is to set

Y =X+2Z, Z~Ber(p), XL1Z
Then E|X — Y| =E(Z) =p.
Definition 5.7 (Stein-Chen coupling). Fori € I, let (U;,V;) denote coupled random variables such that
U~W, 1+Vi~eW|X; =1

U; and V; must be defined on the same probability space, but V; and V; (i # j) don’t need to be. The
main result of the course is:

Theorem 5.8. Let
W=>"X;, X;~Ber(p), A= Zpl—E ), W ~ Poi(\).

7

For ACZ,,

IP(W € A) —P(W € A)| < min{1, l/A}ZpllE\U Vil.

i=1
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The “quality” of the couplings (U;,V;) will determine the strength of the bound. Note that for
independent summands we have U; = W and V; = Zﬁéi X;~W-1]X;,=1

Proof of Theorem 5.8. By the definition of g4 j,
P(W € 4) — B(W € A) = EQAgaa(W + 1) = Wgan (W)
Since A =), pi,
EAgas(W+1)) =Y piE(gar(W +1)) = > piE(ga(U; + 1)).

Since W = )", X,
E(Wgax(W)) = ZE(XigA,/\(W))

= ZpiE(XigA,A(W)|Xi =1)+ (1 - p)E(Xiga(W)|X; = 0)
= ZpiE(gA,A(W)|Xi =1)= ZPiE(gA,A(l +Vi)).
Thus

IP(W € A) = P(W € A)| = | piE(gar(Ui + 1) — gar(Vi +1))

n
<suplgan(n+1) — gax(m) x 3 pEIU; - Vil
n2l i=1

Theorem 5.4 now completes the proof. |
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6. ESTIMATES AND PROOFS

Proof of Lemma 5.1. Suppose X is Poi()):

A" _)\)\

E(Ag(X +1 g(n+1)e

’I’L

_A A
—r

—)\

; ;
n:l n:l
Conversely, consider g(z) = 1,—1. Then
EMAg(X +1) - Xg(X)) =P X =k—1)—kP(X =k)=0.

Hence for every k > 1

= )
)

P(Poi(\)
~ P(Poi(\) =

Proof of Lemma 5.2. Let g(0) = 0; g is then defined inductively in terms of f by

f(o) +ng(n)

gln+1) = 5

Thus

o) =10 gy = A LTO gy SO 2I0) 21O

n—1) '« k n—
mm=(M”Zyw%——¢j'Zf o
k=0 )

forn>1. If n > A,

manlf(k)\
n—\

—1)!
n)\n Zf

Thus g is bounded. The uniqueness of g is left as an exercise. |

6.1. Solution to Stein’s approximating equation. (Proof of 5.4) To use the bound

[P(W € A) —P(W € A)| < SUP|9A,\(7H‘1) gax(n ZPZEW Vil

we will solve Stein’s approximating equation.
Lemma 6.1. The solution to Stein’s approximating equation can be written

dar(n) = P(W € A, W < n) ;]P’(W € AP(W < n) no 1
nP(W =n)

Proof. The proof follows from Lemma 5.2 by taking f(n) = 1,ca — IP’(W € A). |
Remark 6.2. Note that gax(n) =3_,c 4 9(j3.2(n) with

P(W = §)(1;<n —P(W < n))
nP(W = n)

gpa(n) =

and

> giyan) =gz, A(n) = 0.

JELy

Lemma 6.3. [gax(n+1) —gax(n)] < grmya(n+1) — gy a(n).
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Proof. Recall that s e
P(W =j)(Aj<n —P(W <n))

. n) = — .
9y () nP(W = n)
Ifn <y
“PW = J)B(W <n) _ o 0K ke (0= 1)
g = =-P(W =3 AR
{]})\( ) nP(W:n) ( )kzo k!
n—1
—~ n—1)x...(n—1
Y e LR
1=0
is negative and decreasing in n. If n > j,
PW =PV >n) = =~ (=1
griaa(n) = — =P(W = AT
=P =1
W j);n(n—i—l) X...(n+1)

is positive and decreasing in n. Plotting g;;},x(n) against n: we see that ggjy A (n+ 1) — gg;3.a(n) > 0 if

A *

jj+1

FIGURE 1. Plot of gg;3 a()
and only if n = j. As
Z (9{3} A(n+1) g{j},x(n)) =0

the maximum of [g4 x(n+1) — gA’ (n)\ is obtained when A = {n} or A = {n}°. [ |
Lemma 6.4. g, a(n+1) — giypa(n) < 5(1—e?).
Proof. Note that

Sl + 1) = gy a(m) = O RS

(n+1D)P(W =n+1) nP(W = n)
oo . n—1
1 US| eV
= D e ;mZ i
r=n-+1 r=0
e =N L e A" 1—e
=52 Nzwn) <A<Zﬂl> <S5
r=n+1 r=1 r=0

Lemma 6.5. 1(1 —¢e™*) <min{l,1/A}.

Proof. Clearly, 1 —e * < 1. We also have 1 — A < e or 1 —e * < A. Thus 1 — e < min(1,\) or
(1 —e*) < minf1,1/A}. [ |
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7. DISSOCIATED RANDOM VARIABLES

Consider a sum of Bernoulli random variables with independence between some but not all of the
random variables,

W= Zsz Xi~Ber(pi), A= sz‘.
i€l i€l
We say that the indicator variables (X; : i € I) are dissociated with respect to a collection of neighbor-
hoods (N : 7 € I) if for each i € I,

X; is independent of {X; : j & N; U {i}}.
We will assume that i ¢ N; for all 4.
Theorem 7.1.

drv(W,Poi(3) < min{1,1/A} Y (2 + 3 (pin; + E(XiX)))).

el JEN;
Proof. Let
U =W = ZXi
iel
and
Vi= > X+ v v e X xi=1
JENG,G#i JEN;
Then
dry (W, Poi(\) < min {1,1/A} Y pE|U; — V.
i
with
E|U; - Vil =E[X; + 3 (X, - ¥
JEN;
<EX|+ Y (]E|Xj| +E|Yj<”\)
JEN;
E(X;X;
=p; + Z (pj-f—E(Xj |Xi:1)> =p; + Z (pj'f‘i( . J))
JEN; JEN; Pi
Theorem 5.8 now completes the proof. |

Example 7.2 (A Birthday problem). Suppose that there are 73 students taking a course, and each
student has 10 friends. What is the probability that two friends share a birthday?

Take the students birthdays to be independent and identically distributed on the set of days of the year
(excluding February 29th),

Z; ~ Uniform{1,2,...,365}.
The number of pairs of friends is

1 ifZ, =2
R S T

{i,j} friends 0 otherwise.

For each pair of friends ij, X;; ~ Ber(p;;) with p;; = 1/365. The number of pairs of friends is 73x10/2 =
365 so the expected value of W is A = 365/365 = 1.
The variables (X;;) are dissociated with respect to the neighborhoods

Nij =kl [{i,j} 0 {k, 1} =1}, [Nl =9+09.
Thus

dry (W, Poi(1)) < > (P?j‘f' > (pijpkl+E<Xinkl)))
ij friends klEN;;
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Thus
37 37
P >1 P(Poi(1) > 1) — —,P(Poi(1) > 1 —
(W >1) € [P(Poi(1) > 1) = o= P(Poi(1) > 1) + = |

= {1—671—%,1—6714—%].

Example 7.3 (Counting number of wedges in Erdos-Renyi random graphs). An Erdos-Rényi random
graph is formed on N wvertices. FEach unordered pair {i,j} of vertices is connected with probability p,
independently of all the other pairs.

A wedge (or path of length 2) is a tuple (i,{j, k}) where i,j,k are distinct and each of the edges {i,j}
and {i,k} is connected. There are N(Ngl) many such tuples and each tuple forms an wedge (i.e. both
connections are present) with probability p>. Let W denote the number of wedges contained in the random

graph. Clearly,
A=E(W) = N(N; 1>p2.

Is W approzimately Poi(\) ?

Let (Y;; : 1 <i < j < N) be ii.d Ber(p) random variables. The r.v. Y;; is the indicator of whether
the edge {i,j} is connected. We will use ij for the edge {i,j}. We can write

N
W=> > Xij

i=1 j<k,
J,k#i

where X; ji = Y;;Yip ~ Ber(p?). Here Dijk = 2.

If we define
Nijr ={(a,{b,c}) : [{ij, ik} N {ab, ac}| = 1}
as the set of tuples that share a common edge with the tuple (i, jk), then X; ji is independent of all wedges
not indexed by N; ji U {(i,jk)}. Moreover, we have

Nkl = 2(N — 3) + 2(N — 2) = 2(2N — 5)

where the first counts tuples that also have the same center verter i and the second counts tuples that
have center vertex different from i. Thus

dry (W, Poi(1)) < min{1,1/A} > (pijk; + > (pi7jkpa,bc + E(Xi,ija,bc)))
(2,5k) (a,bc)ENG ik

= min{1,1/\}N (J;[) (p* + 22N = 5)(p* + p*))
< min{\, 1}(p? +8Np)

= min{N3p?/2,1}(p + 8N)p.
The final term converges to zero iff Np — 0 as N — oo. Thus W = Poi(\) when Np — 0 as N — oc.
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8. POSITIVE-ASSOCIATION

A collectlon (X; : i € I) of Bernoulli random variables is positively related if for every ¢ € I, we can
construct ( : j # i) coupled with X; such that

VA~ (XA [ Xi=1 and Vj#i, V) > X

Let

W=3"Xi, Xi~Ber(p). A=) pi.

el el
Theorem 8.1.
drv (W, Poi()\)) < min {1,1/)\} (Var )\—l—ZZpZ).

Proof. Let

Ui=W, Vi=Y Y ~W-1]X,=1.

J#i
Then
dry (W, Poi(A) < min{1,1/A} > pE|U; — Vi
with
piElU; — Vi = piE’Xz’ + ZXJ' - Yj(i) < piE[XG| + ZPiE(Yj(i) - Xj)
J#i J#i
X2+ 3 [B(X:X;) - E(X)E(X;)]
J#i
<> (B(XGX;) ~ E(X)E(X;)) — B(X2) + 2E(X,)?
J

SO

sz]E|U Vi| = Var(W )\JrQsz
This completes the proof. |

Example 8.2 (Neighboring ‘1’s on a circle). Let Zy,...,Z, denote a collection of Ber(p) random vari-
ables arranged in a circle. Think of Z; as indicating that tube stations on London’s circle line are out of
service. How many neighboring pairs of stations are both out of service?

Let X;,1 = 1,...,n denote the event {Z; = Z;11 = 1} (indices modulo n). The X;’s are positively
related, as conditional distribution of (Z1,...,2Z,) given X; = 1 is the same as the distribution of the
vector (Z1, ..., Zi—1,1,1, Zia, ..., Zy,) and the indicators that two consecutive stations are out of service
is bigger for (Z1,...,Zi—1,1,1,Zi1o, ..., Zy) than (Z1,...,Z,). Let W count the number of pairs of
out-of-service stations,

The variance of W s

n

Var(W) =Y (E(X?) +y ]E(Xin)) — (EW)?

i=1 j#i

=2+ Y E(X:X;) —n’p*
i ji
=A+n (2p3 +(n— 3)p4) —n2p* = X+ 2np® — 3npt.
Thus

drv (W, Poi(np?)) = min{1,1/(np?)} [Var(W) — A + 2 Z 7

= min{1,1/(np®)}[2np* — 3np* + 2np*] = min{np®, 1}(2 — p)p.
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Example 8.3 (Treize). Take a regular pack of 52 cards. For simplicity, assume the cards are labelled
1,2,...,18; with four cards of each type. Draw 18 cards.

o Let X; =1 if the i-th card is of type i; otherwise 0.

o Let W = leil Xi. A\=E(W)=1. Is W approzimately Poi(1)?
The X;’s are positively related. Construct U; = X1+ Xo+-+-+ X3, and 14+V; = Yl(i) + Yz(i) et Yl(é)
as follows: the Yj(i) are obtained by sequentially drawing cards after having previously arranged for the
i-th draw to have face value i (by secretly reserving one of the four cards of face value i for draw i). Now
the X; are obtained by swapping that secretly reserved card with a card drawn at random. Then Y}(i) > X;

(since the swap may destroy a match and will not create any). Consequently we have a positively related
situation, and noting that A = 1, the Stein-Chen method yields

13
1 21
drv (W, Poi(1)) < min{1,1} (Var(W) —1+2)° 132> = oo
i=1

since
n

Var(W) =Y (E(XE) n ZE(Xin)) —EW)? =2+ SEXX) - A?

i=1 VE A

1 4 16
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9. NEGATIVE-ASSOCIATION

A collection (X; : ¢ € I) of Bernoulli random variables is negatively related if for every i € I, we can
construct (Yj(l) : j # i) coupled with X; such that

VA~ (XA Xi=1 and Vj#i V) <X

Let
W=> X, X;~Ber(p:), A=) pi
1€ el
Theorem 9.1.
drv (W, Poi()\)) < min {1,1/A} ()\ - Var(W)).
Proof. Let 4
Ui=W, Vi=Y Y ~W-1]X,=1.
J#i
Then
dry (W, Poi(A) < min {1, 1/} ZpiE|Ui — Vil
with
pE|U; — Vi| = pilalxi + X - YO < pEIX| + D pEX; - YY)
J#i i
<E(X)? + Y [E(X)E(X;) - E(X:X;)]
J#i
<E(X?) - (B(XX;) - B(X)E(X;))
J
SO

> piE|U; — Vi| = X = Var(W).

Example 9.2 (The occupancy problem). Take m balls and n empty boxes. Place each ball in a box
uniformly at random into one the boxes, with the choice made independently of the other balls. Let

Xi = Tpos i is empty ™ Ber((l - l/n)m)’ W = ZXz

W is the total number of empty boxes; A = E(W) = n(1l — 1/n)™. The variables are negatively related:
construct V; from U; by emptying box i and redistributing the balls it contained amongst the other bozes.
We have

Var(W) = zn: E(X?) + ZE(Xin) —E(W)? =X+n(n—1)(1—2/n)™— N2
i=1 i#j
Thus we have
drv (W, Poi()\)) < min(1,1/A)(n*(1 — 1/n)*™ —n(n — 1)(1 — 2/n)™)
1

1 -m
<min( (1= (1= 2) (1 =) )
min(A, A%) - + o P
Now we have 1 + 1/n(n —2) < exp(1/n(n — 2)) or (1 + m)i > e /=2 Also 1 —1/n >
e~V n=1) 5 =1/ (n=2) gnd \ < ne=™/"™. Thus

dTV(W7 POI()\)) < min()\, )\2)(1 o e—(m+n)/n(n—2)> < ne—m/n . m+mn m+mn

nn—2)  n-—2

—m/n.

Thus W is approzimately Poi(\) whenever m/n — oo as n — co.



EXERCISE SHEET 1

(1) Show that for probability measures P, Q on Z,
1 [ee]
sup (P(4) - Q(4)) = 5 > IP(k) = Q(K)I.
ACL+ k=0

(2) Describe an algorithm that uses a supply of Uniform[0, 1] random variables to sample two random
variables X and Y such that

(1) X has distribution P,
(2) Y has distribution @, and
(3) P(X =Y) is maximised.

(3) Show that 1+ = < e” for z € R. Hint: consider the derivative of the function (e* — z — 1).

(4) Show that exp(—p/(1 —p)) < 1 —p < exp(—p) for p € (0,1). Hint: question 2 can be used to give
both bounds.

(5) Show (without looking at your notes) that if 0 < k < n,

(5) (k —np)p . B
n—/2€—|—1+ - < P(Bin(n,p) = k)

P(Poi(np) = k) exp (—

k
< P(Poi(np) = k) exp <— () + k‘p) )

n
Use these inequalities to write an expression (an infinite sum) that bounds above drv (Bin(n, p), Poi(np)).

(6) Show that if A = 37", pi,

k

£\ < _
A Z pi, | < <2> pr)\k 2
1 i=1

1< <ia < <ip<n \Jj=

(7) Show that

n

1- H(l —pi) < szw

i=1

(8) If W ~ Poi(A), show that

AP(W =n) = (n+ 1)P(W =n +1).

(9) Show that if W ~ Poi(\) and n > 1, then
P(W < n) < n+1

— < ifn>XA—1.
nP(W =n) nn+1=23)
(10) Show that if W ~ Poi(\) and n > 1, then
POV < n) ifn <A+l

nP(W = n) S A+l-n



EXERCISE SHEET 2

(1) Prove that if W is Poisson()\), then E(Ag(W +1) — Wg(W)) = 0 for every bounded function ¢ : Z; —
R.

(2) Prove the converse to the previous exercise. Hint: Try g(r) = 1 if r = n and g(r) = 0 if r # n.

(3) Show that if A > 0 and W ~ Poi(\) then

([)]-5 e

W=>"X;, X;~Ber(p), A= sz =E(W), W ~ Poi()).
el
Define Stein couplings and Stein’s estimating equation. Show that for A C Z,

POV € 4) (W € A) < suplgar(n+1) = gan(r Wl B Vi

(4) Consider

(5) Use the bound

n

doy(W, W) < mln{ }ZplE|U Vil.

to bound above drv(Bin(n,1/(2n)),Poi(1/2)) and drv (Bin(n, 7/n),Poi(7)).

(6) There are n — m careful people, each has an accident with probability p?. There are m careless
people, each has an accident with probability p. Incidence of accidents are independent. Then number

of accidents is
W:iXZ7 XZN Ber(p2)7 752 1’..-’n_m,
pt Ber(p), i=n—-m+1,...,n.

Calculate A = E(W) and an upper bound on drvy (W, Poi(A)).

(7) A town is divided into n x n separate blocks based on a square grid. The town is surveyed after a mild
earthquake, and blocks are marked if they contain any earthquake damage. Suppose that the probability
of square (4,5) (for i,j = 1,...,n) containing at least one building with earthquake damage is ij/(4n?).
Supposing that different blocks are independent, bound drv (W, po(\)), where W is the number of blocks
with earthquake damage, and

) PeE e

=1 j=1
Hint:

n

Y 1= 771(71—1—1) and Zi2 = —n(n+%)(n+1).
3

i=1 i=1



EXERCISE SHEET 3

(1) Lighting Manhattan: Manhattan is built on a grid. Consider a 10x 10 square grid. At each intersection

o is a street light. Each of the 102 lights is broken with probability p; let independent random variables
Zij ~ Ber(p), 1,7 €{1,...,10},
model which lights are broken. There are 180 = 2 x 10 x 9 sections of roads (— and |) bounded on both

sides by a lights. A section of road is dark if the lights at both ends are broken; each section of road is
dark with probability p?. Let W count the number of dark sections of road. Is W approximately Poisson?

(2) The changes of price of a stock are assumed to take the form Z; — 1/2 were
Z; ~ Ber(1/2),i=1,...,1009.

For i € {1,...,1000}, let X; indicate the event that starting on day i, the price decreased for five days,
then increased for five days, i.e. Z; = - = Z;44 =0, Z;y5 = -+ = Z;19 = 1. Show that the X; are
negatively related. Is W = ). X; approximately Poisson?

(3) (Example 7.3 revisited) An Erdds-Reényi random graph G, (p) has vertex set 1,...,n and each edge
{i,7} is open (or present) with probability p, and closed (or deleted) with probability 1 — p,

&= {{Z,]} : Xij = 1}7 Xij ~ Ber(p).
A “path of length 2”7 is collection of 3 distinct vertices ijk (with i < k) such that E contains both
{i,7} and {j,k}. Let W count the number of paths of length 2 in the random graph. Find the mean

and variance of W. Show how to use positive association of the indicator of wedges to find when W is
approximately Poisson?

(4) Let W be the number of triangles in an Erdés-Renyi random graph G, (p), where a triangle is a set of
three vertices {4, 7, k} such that each of the three edges {i,j}, {4, k},{J, k} is present. Find appropriate
condition under which W is approximately Poisson distributed.

(5) Nearest-neighbor statistics: Independently choose points Y7, ...,Y, uniformly at random in the unit
square [0,1]%. Let |Y; — Y;| denote the distance between Y; and Y; with respect to toroidal (periodic)
boundary conditions. Let r € (0,1) and let

1 if |y, =Y, <,
Xij = .
0 otherwise.

Let W =3, _. X;; denote the number of pairs at distance less than r. Is W approximately Poisson?

i<J



EXERCISE SHEET 4

(1) An insurance company covers n — m careful individuals and m careless individuals, where m is
substantially smaller than n, and would like to estimate the number of claims these individuals are likely
to make. Independently on any given day, each careful individual has probability p? of suffering an
accident, while each careless individual has probability p of suffering an accident. Let W be the total
number of individuals suffering an accident on a given day. Apply the Stein-Chen bounds in the case
of independent Bernoulli random variables to estimate the total variation distance between W and a
Poisson distribution of the same mean.

(2) Suppose X and Y are two variables defined on the same probability space, and that X is a Bernoulli
random variable. Suppose further that Z is another random variable also defined on this probability
space, having the distribution of Y conditional on X = 1. Show that

E(XY) = E(X)E(Z).

(3) This is an adaptation of the DNA matching example. Given a target string of n + k — 1 independent
binary symbols each equally likely to be 0 or 1, consider the distribution of the number W of matches of
a fixed string of k£ binary symbols, chosen so that it is impossible for two different matches to overlap.
Use the Stein-Chen approximation for negatively related summands to establish a Poisson approximation
to W, together with error-estimate.

(4) In an investigation into suspected industrial espionage, suspicious fragmentary remains of an encrypted
file are discovered on the hard disk of a company laptop. Investigators find that a binary string from the
file, 40 bits long, exactly matches a substring of a highly sensitive encrypted company document which
is 100000 bits in size. Use Stein-Chen Poisson approximation to estimate the probability of discovering
one such match or more, if the laptop binary string is such that no two matches can overlap, and if the
encrypted company document is modeled by 100000 independent bits independent of the laptop binary
string, each equally likely to be 0 or 1 (this is a good model for strongly encrypted documents!).

(5) In a statistics lecture, there are 80 students. Each student is friends with 10 of the other students
in attendance. Suppose that the birthdays of students are independently and uniformly distributed over
the year (for simplicity, assume that there are exactly 400 days in each year). Apply the Stein-Chen
approximation to show that there is a greater than 50% chance of there being at least one pair of friends
in the lecture that share the same birthday.

(6) The Circle Line of the London Underground has n & 30 stations (arranged on a circle, of course!). Each
station is closed for renovation independently with probability p ~ 0.1. How well does the Stein-Chen
procedure approximate the distribution of W the number of pairs of stations in immediately neighboring
locations that are both closed?
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