
ST329: COMBINATORIAL STOCHASTIC PROCESSES

ST414 (TERM 2, 2013–2014)

PARTHA DEY

UNIVERSITY OF WARWICK

Content.

• Counting, Generating functions, Bell Polynomials and its applications, Moments and cumulants,
Composite strutures, Gibbs partition.

Prerequisites.

• Basic knowledge of Probability theory, Expectation, Independence.
• The course ST111 (Probability A) covers all of them and is essential for this course.

Reading.

• This course is based on Chapter one of Jim Pitman’s “Combinatorial Stochastic Process”.
• Lecture notes online and example sheets at the end of the notes.

Contents

1. Counting 1
1.1. Counting with distinguishable objects 1
1.2. Partition of a set 2
1.3. Composition of an integer 3
1.4. Integer partition 3
2. Exponential generating function 3
2.1. Stirling numbers of second kind S(n, k) 4
3. Bell polynomials 5
3.1. Moments and Cumulants 7
4. Composite structures 8
5. Random sums 8
6. Gibbs Partition 9
6.1. The block sizes in exchangeable order 10
ST329: Exercise sheet 1 11
ST329: Exercise sheet 2 12
Specimen Exam Question 13
Solutions to Exercise sheet 1 14
Solutions to Exercise sheet 2 15



COMBINATORIAL STOCHASTIC PROCESSES 1

1. Counting

The main types of objects we count are sequences and sets. For example, there are nk sequences of
length k with entries from [n] := {1, 2, . . . , n}. We use parentheses or round brackets (· · · ) to denote
that the entries of a sequence are ordered and we use curly braces {· · · } to denote that the elements of
a set are unordered. This section is aimed at how to approach problems involving counting sequences
and counting sets, by presenting two general principles and examples of how to apply them.

a) Multiplication principle

The first extremely useful step-by-step counting principle is for counting sequences:

The Multiplication Principle. The number of sequences (x1, x2, . . . , xk) is the product of
the number of choices of each xi for i ∈ [k].

For example, how do we see that there are n! permutations of [n]? Well we do it step-by-step: there
are n choices for the first entry of a permutation, n − 1 choices for the next entry, and so on. By the
multiplication principle, we just multiply these numbers together, so there are n(n−1)(n−2) · · · 2·1 = n!
permutations.

Another example is to count the number of sequences (x1, x2, . . . , xk) where i 6 xi 6 2i for all i ∈ [k].
Clearly there are i+1 choices for xi, so the multiplication principle gives us the answer, which is (k+1)!.

One more example is total number of subsets of [n], which is 2n. Here we used the multiplication
principle and the fact that for any integer from [n] there are two choices, the number can either be in
the set or not. It is extremely important to realize that the multiplication principle does not work for
counting sets, in general.

b) Unordering principle

Okay, but then how would we count sets? This leads into our second principle: if we count N
sequences (x1, x2, . . . , xk) and we know that none of the xi’s are the same, then the number of sets
{x1, x2, . . . , xk} is just N

k! .

The Unordering Principle. If there are N sequences (x1, x2, . . . , xk) where none of the
xi’s are equal, then there are N

k! sets {x1, x2, . . . , xk}.

In other words, we divide by k! to “get rid of the order”. A good tip, therefore, when counting sets
is to first count sequences and then divide by the appropriate factorial using the unordering principle.
We stress that none of the xi’s can be equal when we apply the unordering principle. The fundamental
example in applying the unordering principle is to count sets of size k in [n] and the answer is

(
n
k

)
. Let’s

do it: first we count permutations (x1, x2, . . . , xk) of length k with entries from [n]: by the multiplication
principle there are n(n − 1)(n − 2) · · · (n − k + 1) such permutations (check this). By the unordering
principle, to get the number of sets of size k in [n], we just divide the number of permutations of length
k by k! to get

n(n− 1)(n− 2) · · · (n− k + 1)

k!
=

(
n

k

)
.

In particular we have the following.

• The number of permutation of n distinguishable objects or the number of ways to arrange n
distinguishable objects is n! (by Multiplication principle).

• The number of permutation of length k from n distinguishable objects or the number of ways
to arrange k objects out of n distinguishable objects is n(n− 1)(n− 2) · · · (n−k+ 1) = (n)k (by
Multiplication principle). The symbol (n)k is called falling factorial or Pochhammer symbol.

• The number of sets of size k in [n] or number of ways to choose a collection of k objects from n
distinguishable objects is

(
n
k

)
= n!

k!(n−k)! .

1.1. Counting with distinguishable objects. Suppose that we have n distinguishable objects marked
by numbers from [n] and we want to fill k places with them. Each place can contain exactly one object.
If no repetition is allowed for any object, when order matters the total number of configurations is (n)k
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and when the order doesn’t matter the total number of configurations is (n)k
k! =

(
n
k

)
, by the unordering

principle.
If we allow repetition, the number of configurations in the above scenario when order matters is nk

(using the multiplication principle, each place can contain exactly one object in n ways). Let us now
find the number of ways to choose k objects from the given n distinguishable objects when the order
does not matter and repetition is allowed. We cannot use the unordering principle here as there can be
repetition in the chosen k objects. What we need is how many times the first object appears, how many
times the second object appears and so on to know the collection of k objects when the order does not
matter and repetition is allowed.

Let pi > 0, i > 1 be the number of times object i appear, so that we have
∑n
i=1 pi = k. So we need

to find number of ways to write k as sum of n non-negative numbers. We can do this by noticing that
if we take k balls and (n − 1) bars |, and consider all possible permutation of the balls and bars. The
(n − 1) bars (|’s) will divide the balls into k many piles, the first pile being all balls before the first |,
the second pile being all balls between the first and second |, and so on, the last pile being all balls after

the last |. The number of all such permutation is (k+n−1)!
k!(n−1)! =

(
n+k−1

k

)
. Thus we get the following table

counting number of ways to fill k places with n distinguishable objects.

No Repetition Repetition allowed

Order matters (n)k nk

Order does not matter
(
n
k

) (
n+k−1

k

)
Table 1. Filling k places with n distinguishable objects, each place contains exactly one object.

1.2. Partition of a set. A partition of [n] is an unordered collection {A1, A2, . . . , Ak} of non-empty
disjoint sets whose union is [n] and such that no two of the sets Ai’s intersect. The sets Ai are called
the parts or blocks of the partition. We will use Pk[n] to denote the set of partitions of the set [n] into k

blocks and P[n] =
⋃n
k=1 Pk[n] to denote the set of all partitions of [n].

It is convenient to write 23 instead of the set {2, 3}, otherwise the notation gets a bit ugly. So for
example, {1, 23} is a partition of [3]. An ordered partition of [n] is an ordering of the sets in a partition
of [n]. For example, we count (1, 23) and (23, 1) as different ordered partitions of [3], even though {1, 23}
is the same (unordered) partition as {23, 1}. For us partition always means unordered partition unless
explicitly mentioned.

How many ordered partitions of [n] have their i-th part of size ni for i ∈ [k]? The answer is the
multinomial coefficient(

n

n1

)(
n− n1

n2

)
· · ·
(
n− n1 − n2 − · · · − nk−1

nk

)
=

n!

n1!n2! · · ·nk!
=

(
n

n1, n2, . . . , nk

)
.

This follows from the multiplication principle, since the product on the right represents the number of
choices for the first part of the partition, then the second part, the third, and so on. But what about
unordered partitions of [n] into parts of sizes n1, n2, . . . , nk? This problem is not easy – in general we
can’t just divide the number of ordered partitions by k!. In the particular case n1 = n1 = · · · = nk =
n/k =: m, we can apply the unordering principle to get the answer

n!

k! ·m!k

since any ordering of the parts of the partition gives an ordered partition with all parts of size m = n/k.
In the case where all the parts have different sizes – all ni’s are different – the number of unordered
partitions is the same as the number of ordered partitions.

Let us consider the problem of filling k places with n distinguishable objects, but now each place can
contain more than one object (with at least one object in each place) and no repetition is allowed. If we
number the objects using {1, 2, . . . , n} = [n], each place contains a set of objects and gives a partition of
[n] into k non-empty blocks. Thus if order matters the number of ways to fill is the number of ordered
partition of [n] into k non-empty blocks and if order doesn’t matter the answer is number of partitions
of [n] into k non-empty blocks. We use S(n, k) to denote number of (unordered) partitions of [n] into
k non-empty blocks. The numbers S(n, k) = |Pk[n]| are known as Stirling numbers of second kind and

will be discussed in detail in Section 2.1. The number B(n) = |P[n]| =
∑n
k=1 S(n, k) is known as Bell

number.
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1.3. Composition of an integer. A composition of an integer n with k parts is a sequence (x1, x2, . . . , xk)
of positive integers such that x1 + x2 + · · ·+ xk = n. Let Ckn denote the set of compositions of n into k
parts and Cn =

⋃n
k=1 Ckn denote the set of all compositions of n.

The xi’s are called the parts of the composition. To count these compositions, it seems at first we
should just apply the multiplication principle: count the number of choices for x1, and then the number
of choices for x2, and so on, and then multiply all these together. But there’s a catch: once we’ve picked
x1, the number of choices of x2 depends on what x1 was picked! We have to find a different strategy.
This is the third and perhaps trickiest principle: reduce the problem to a different counting problem
to which we know the answer. We reduce this problem to counting sets of size k in [n], to which the
answer is |Ckn| =

(
n−1
k−1

)
. We do that by noticing that if we cut [n] into k intervals, then the lengths of

the intervals are exactly the xi’s. So how many ways can we cut [n] into k intervals? Well we have to
choose k − 1 places to cut [n] and there are n − 1 possible places between numbers where cuts can be
made. This validates our answer. We also mention that, when xi’s are allowed to be zero, instead of
composition one will get a weak composition.

From here it follows that the number of ways to put n indistinguishable objects into k places where
none of the places is empty and ordering matters is

(
n−1
k−1

)
. We haven’t said anything about counting

sets {x1, x2, , . . . , xk} such that x1 + x2 + · · ·+ xk = n. This is with good reason: we cannot apply the
unordering principle, so we get into the same problems as when we try to count unordered partitions.
We discuss this in the next Section.

1.4. Integer partition. A partition of a positive integer n, also called an integer partition, is a way
of writing n as a sum of positive integers. Two sums that differ only in the order of their summands
are considered the same partition. If order matters, the sum becomes a composition. Let Pkn be the
number of integer partitions of n into k parts. Thus

Pkn := {(ni)ki=1 | n1 > n2 > · · · > nk > 1,

k∑
i=1

ni = n}.

The set Pn :=
⋃n
k=1 Pkn of all partitions of n can be written as

Pn := {(ni)∞i=1 | n1 > n2 > · · · > 0,

∞∑
i=1

ni = n}.

Note that we can also write an integer partition of n as (mj)
n
j=1 where mj is the number of times j

appears in the integer partition and
∑n
j=1 jmj = n. Clearly

∑n
j=1mj is the number of parts in the

integer partition.
Let P (n, k) := |Pkn| be the number of integer partitions of n into k parts. It is easy to see that the

number of ways to put n indistinguishable objects into k places where none of the places is empty and
ordering does not matter is P (n, k). However, in this course we will not discuss much about P (n, k)
and its properties.

Combining we get the following table counting number of ways to fill k places with all of n objects
where each place can contain more than one object and at least one object.

distinguishable objects indistinguishable objects

Order matters k!S(n, k)
(
n−1
k−1

)
Order does’nt matter S(n, k) P (n, k)

Table 2. Filling k places with all of n objects, each place contains one or more object.

2. Exponential generating function

The exponential generating function associated with the weight sequence w = (wn)n>1 is defined
as the formal power series

gw(x) =

∞∑
n=0

wn
xn

n!
.

We also define, the generating function associated with the weight sequence w = (wn)n>1 as the
formal power series

fw(x) =

∞∑
n=0

wnx
n.
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Generally we will have w0 = 0 and thus the sum will start from n = 1. Notation such as

cn = [xn]f(x)

should be read as “cn is the coefficient of xn in f(x)”, meaning

f(x) =

∞∑
n=0

cnx
n.

where the power series might be convergent in some neighborhood of 0, or regarded as formally. Note
that e.g. [

xn

n!

]
f(x) = n![xn]f(x).

2.1. Stirling numbers of second kind S(n, k).

Definition 2.1. Let

S(n, k) = number of ways to partition [n] into k non-empty blocks.

The numbers S(n, k) is called Stirling numbers of second kind and is also written as {nk }.
It is easy to see that S(n, 0) ≡ 0 and S(n, 1) ≡ 1 for every n > 1, as there is exactly one partition

with one block, namely the set itself.
Let us now try to find S(n, 2). Note that 2!S(n, 2) is the number of ordered partition of [n] into 2

non-empty blocks. In an ordered partition with 2 blocks, the first block can be any subset of [n] except
∅ and [n], and the second block is the complement of the first block. Number of subsets of [n] is 2n, by
the multiplication principle (for each number in [n] there are two options, either it is in the set or it is
not). Thus

2!S(n, 2) = 2n − 2 or S(n, 2) = 2n−1 − 1 for n > 1.

How to find S(n, k) for general k? First we claim that the following relation is true.

Lemma 2.2. For every n > 1 and k > 1 we have

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k).

Proof. Recall that, S(n, k) is the number of ways to partition [n] into k non-empty blocks. Let us
count the same number in a different way depending on whether {n} is a block of the partition or not.
If the set {n} is a block of the partition, the number of choices for the remaining (k − 1) blocks are
S(n− 1, k − 1) = number of partitions of [n− 1] into (k − 1) non-empty blocks. If {n} is NOT a block
of the partition, we can choose a partition of [n− 1] into k non-empty blocks and put n in one of the k
blocks to get a partition of n in k · S(n− 1, k) ways. Thus we have

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k). �

We will use this relation to find an exact formula S(n, k) in the next section. Let

gk(x) :=

∞∑
n=0

S(n, k)
xn

n!
=

∞∑
n=1

S(n, k)
xn

n!

be the exponential generating function associated with the Stirling numbers of second kind S(n, k), n > 1
for fixed k > 1. Using the relation S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k) we have

g′k(x) =

∞∑
n=1

S(n, k)
nxn−1

n!
=

∞∑
n=1

(
S(n− 1, k − 1) + k · S(n− 1, k)

) xn−1

(n− 1)!

=

∞∑
n=1

S(n− 1, k − 1)
xn−1

(n− 1)!
+ k

∞∑
n=1

S(n− 1, k)
xn−1

(n− 1)!

= gk−1(x) + kgk(x).

We claim the following.

Lemma 2.3. We have

gk(x) =
1

k!
(ex − 1)k for k > 1.

In particular,

S(n, k) =

k∑
i=1

(−1)k−i
in

i!(k − i)!
for n > 1, k > 1.
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Proof. We have already proved that

g′k(x) = gk−1(x) + kgk(x) (1)

for all k > 1. We use induction to prove the result from here. For k = 1, it is easy to see that

g1(x) =

∞∑
n=1

1 · x
n

n!
= ex − 1.

Thus the lemma is true for k = 1. Assume that

gk−1(x) =
1

(k − 1)!
(ex − 1)k−1.

Using (1) and multiplying both sides by e−kx we have

g′k(x)− kgk(x) =
1

(k − 1)!
(ex − 1)k−1

or (e−kxgk(x))′ =
e−kx

(k − 1)!
(ex − 1)k−1 =

e−x

(k − 1)!
(1− e−x)k−1.

Integrating both sides and noting that gk(0) = 0 we have

e−kxgk(x) =
1

k!
(1− e−x)k or gk(x) =

1

k!
(ex − 1)k.

For the proof of the second part, note that

S(n, k) =

[
xn

n!

]
gk(x) =

[
xn

n!

]
1

k!
(ex − 1)k

=

[
xn

n!

]
1

k!

k∑
i=0

(
k

i

)
eix(−1)k−i

=

[
xn

n!

]
k∑
i=0

(−1)k−i
eix

i!(k − i)!
=

k∑
i=1

(−1)k−i
in

i!(k − i)!
.

�

3. Bell polynomials

Given the sequence w• = (w1, w2, . . .) the (n, k)-th partial Bell Polynomial Bn,k(w•) is defined as

Bn,k(w•) :=
∑

{A1,A2,...,Ak}∈Pk[n]

k∏
i=1

w|Ai|

where |A| is the number of elements in the set A and the sum is over Pk[n] = all partitions of [n] into k

blocks. Note that Bn,k(w•) depends only on w1, w2, . . . , wn−k+1 as the largest block size can never be
bigger than n− k + 1. It is easy to see that

Bn,1(w•) = wn for n > 1

as P1
[n] consists only of {[n]}. We also have (exercise)

Bn,2(w•) =

{∑(n−1)/2
i=1

(
n
i

)
wiwn−i if n is odd∑n/2

i=1

(
n
i

)
wiwn−i − 1

2

(
n
n/2

)
w2
n/2 if n is even.

Note that for the sequence 1• = (1, 1, . . .), we have

Bn,k(1•) = |Pk[n]| = S(n, k).

We can write Bn,k(w•) in an alternate form using compositions of n into k parts.

Lemma 3.1. Let Ckn denote the set of all compositions of n into k parts. We have

Bn,k(w•) =
n!

k!

∑
(n1,n2,...,nk)∈Ckn

k∏
i=1

wni
ni!

.
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Proof. Note that we can write

Bn,k(w•) :=
1

k!

∑
(A1,A2,...,Ak)

k∏
i=1

w|Ai|

where the sum is over all ordered partitions of [n] into k blocks. Given an ordered partition (A1, A2, . . . , Ak)
of [n] into k blocks, the sequence (|A1|, |A2|, . . . , |Ak|) gives a composition of n into k parts. However,
number of ordered partitions of [n] giving the same composition (n1, n2, . . . , nk) is (see Section 1.2)

n!

n1!n2! · · ·nk!
.

Thus

Bn,k(w•) :=
1

k!

∑
(n1,n2,...,nk)∈Ckn

n!

n1!n2! · · ·nk!

k∏
i=1

wni =
n!

k!

∑
(n1,n2,...,nk)∈Ckn

k∏
i=1

wni
ni!

.

�

From Lemma 3.1 it follows that for the sequence •! = (1!, 2!, 3!, . . .) we have

Bn,k(•!) =
n!

k!
|Ckn| =

n!

k!

(
n− 1

k − 1

)
.

This numbers Bn,k(•!) are also known as unsigned Lah numbers in the literature. From Lemma 3.1 we
also obtain the following important result.

Lemma 3.2. Let

g(x) =

∞∑
n=1

wn
xn

n!

be the exponential generating function associated with the sequence w• = (w1, w2, . . .). Then we have[xn
n!

]g(x)k

k!
= Bn,k(w•)

Proof. It is easy to see that

g(x)k = g(x) · g(x) · · · g(x) =
∑

n1,n2,...,nk>1

wn1

xn1

n1!
· wn2

xn2

n2!
· · ·wnk

xnk

nk!
.

Thus [xn
n!

]
g(x)k = n![xn]g(x)k = n!

∑
(n1,n2,...,nk)∈Ckn

wn1

n1!
· wn2

n2!
· · · wnk

nk!

= n!
∑

(n1,n2,...,nk)∈Ckn

k∏
i=1

wni
ni!

Thus by Lemma 3.1 we have[xn
n!

]g(x)k

k!
=
n!

k!

∑
(n1,n2,...,nk)∈Ckn

k∏
i=1

wni
ni!

= Bn,k(w•).

�

Lemma 3.3. Given a sequence of non-negative integers (mj)
n
j=1 with

∑n
j=1 jmj = n and

∑n
j=1mj = k

the coefficient of wm1
1 wm2

2 · · ·wmnn in Bn,k(w•) is[
wm1

1 wm2
2 · · ·wmnn

]
Bn,k(w•) =

n!∏
j>1(j!)mj ·mj !

.

Proof. Given a composition (n1, n2, . . . , nk) of n into k parts, we define its skeleton as kj = number of
ni’s that are equal to j, for j = 1, 2, . . . , n. Note that the resulting skeleton sequence (kj)

n
j=1 satisfies∑n

j=1 jkj = n,
∑n
j=1 kj = k.
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Given a sequence of non-negative integers (mj)
n
j=1 with

∑n
j=1 jmj = n and

∑n
j=1mj = k, how many

compositions of n with k parts are there with skeleton (mj)
n
j=1. The answer is (exercise)

k!

m1!m2! · · ·mn!
.

Also each composition having skeleton (mj)
n
j=1 contributes

n!

k!

n∏
j=1

w
mj
j

(j!)mj

in Sn,k((•w)) by Lemma 3.1. Thus the coefficient of wm1
1 wm2

2 · · ·wmnn in Bn,k(w•) is

n!

k!
·
n∏
j=1

1

(j!)mj
· k!

m1!m2! · · ·mn!
=

n!∏
j>1(j!)mj ·mj !

.

�

3.1. Moments and Cumulants. Given a random variable X and an integer n > 1, its n-th moment
is defined as

µn := E(Xn)

when it exists. Let

mX(t) = 1 +

∞∑
n=1

µn
tn

n!
= E(etX)

be the moment generating function of X, if it exists.

Definition 3.4. The n-th cumulant

κn :=

[
tn

n!

]
logmX(t)

of X is defined as the coefficient of tn

n! in logmX(t) for n > 1.

Example 3.5. Let X ∼N(µ, σ2), normal distribution with mean µ and variance σ2. The moment
generating function of X is mX(t) = exp(µt+σ2t2/2) with logmX(t) = µt+σ2t2/2. Thus the cumulants
are κ1 = µ, κ2 = σ2, κ3 = κ4 = · · · = 0.

Example 3.6. Let X ∼Poisson(λ), Poisson distribution with mean λ. The moment generating function
of X is mX(t) = exp(λ(et−1)) with logmX(t) = λ(et−1) = λ

∑∞
n=1

t
n! . Thus the cumulants are κn = λ

for n > 1.

In general it is not easy to find the values of κn directly as we first have to calculate the moment
generating function and then expand its logarithm in a power series. However, the following result
shows how to find cumulants in terms of the moments.

Lemma 3.7. Let µ• = (µn)n>1 be the moments of a random variable X. Then its n-th cumulant κn is
given by

κn =

n∑
k=1

(−1)k−1(k − 1)!Bn,k(µ•).

Proof. Note that

κn :=

[
tn

n!

]
logmX(t)

where mX(t) = 1 + g(t) and g(t) is the exponential generating function associated with the sequence
µ• = (µn)n>1. Thus

κn :=

[
tn

n!

]
log(1 + g(t)) =

[
tn

n!

] ∞∑
k=1

(−1)k−1 g(t)k

k
=

∞∑
k=1

(−1)k−1(k − 1)!

[
tn

n!

]
g(t)k

k!
.

By Lemma 3.2 the proof follows. �
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4. Composite structures

Let v• := (v1, v2, . . .) and w• := (w1, w2, . . .) be two sequences of non-negative integers. Let V be
some species of combinatorial structures, so for each finite set Fn on nobjects there is some construction
of a set V (Fn) of V -structures on Fn, such that the number of V -structures on a set of n objects is
|V (Fn)| = vn. For instance, V (Fn) might be Fn × Fn, or permutations from Fn to Fn, or functions
from Fn to Fn, or all graphs on Fn corresponding to the sequences vn = n2, or n!, or nn, or 2n(n−1)/2

respectively.
Let W be another species of combinatorial structures, such that the number of W -structures on a

set of j objects is wj . Let (V ◦W )(Fn) denote the composite structure on Fn defined as the set of all
ways to partition Fn into blocks {A1, . . . , Ak} for some 1 6 k 6 n, assign this collection of blocks a V -
structure, and assign each block Ai a W -structure. Then for each set Fn with n elements, the number
of such composite structures is evidently

|(V ◦W )(Fn)| =
n∑
k=1

vk
∑

{A1,A2,...,Ak}∈Pk[n]

k∏
i=1

w|Ai| =

n∑
k=1

vkBn,k(w•).

We define

Bn(v•,w•) :=

n∑
k=1

vkBn,k(w•).

Thus we have the following result.

Lemma 4.1. Let

v(x) :=
∑
n>1

vn
zn

n!
, w(x) :=

∑
n>1

wn
zn

n!

be the exponential generating functions associated with the sequences v• := (v1, v2, . . .) and w• :=
(w1, w2, . . .), respectively. Then we have[xn

n!

]
(v ◦ w)(x) = Bn(v•,w•).

Proof. The proof follows from the fact that

(v ◦ w)(x) =

∞∑
k=1

vk
w(x)k

k!

and Lemma 3.2. �

Example 4.2 (Partitions). Let V be the trivial structure, namely the set itself. Thus vk ≡ 1. It is
easy to see that v(x) = ex − 1 and thus v(v(x)) = ee

x−1 − 1. The composite structure (V ◦ V )([n]) is a
partition of [n] with any number of parts. Moreover, |(V ◦ V )([n])|, total number of partitions of [n] is[
xn

n!

]
(ee

x−1 − 1).

Example 4.3 (Permutations). Let V be the trivial structure, namely the set itself and W be the cycle
structure, namely given n objects V gives the set itself and W gives a cyclic permutation of the n objects.
Thus vk ≡ 1 and wn = (n− 1)!. It is easy to see that v(x) = ex − 1 and w(y) =

∑∞
n=1(n− 1)!yn/n! =∑∞

n=1 y
n/n = − log(1 − y). Thus v(w(x)) = e− log(1−x) − 1 = x

1−x =
∑∞
n=1 x

n. In particular, we have

(V ◦W )([n]) = Bn(v•,w•) = n!, which is the number of permutations on [n]. In fact, one can check
that the composite structure (V ◦W ) is indeed the permutation structure.

Example 4.4. Let V be the permutation structure. Thus vk = k! and v(x) =
∑∞
k=1 x

k = x/(1 − x).
Moreover, v(v(x)) = v(x)/(1 − v(x)) = x

1−x
1−x
1−2x =

∑∞
n=1 2n−1xn. Thus |(V ◦ V )([n])| = 2n−1n!. The

same result can be obtained, by noting that the (V ◦ V ) composite structure on [n] is nothing but taking
a permutation of [n] in n! ways and in between two consecutive elements either put a ‘,’ or no ‘,’ in
2n−1 ways.

5. Random sums

Let X,X1, X2, . . . be independent and identically distributed nonnegative integer valued random
variables with probability generating function

GX(z) = E(zX) =

∞∑
n=0

P(X = n)zn.
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LetK be another non-negative integer valued random variable independent ofX1, X2, . . . with probability
generating function GK . Let

SK := X1 +X2 + · · ·+XK .

By conditioning on K, the probability generating function of SK is found to be the composition of GK
and GX :

GSK (z) = GK(GX(z)).

Comparison of this formula with the compositional formula given in Lemma 4.1 for Bn(v•,w•) in terms
of the exponential generating functions v(z) =

∑
n>1 vnz

n/n! and w(ξ) =
∑
n>1 wnξ

n/n! suggests the

following construction (It is convenient here to allow v0 to be non-zero, which makes no difference in
Lemma 4.1).

Let Pξ,v•,w• be a probability distribution which makes Xi independent and identically distributed
with the power series distribution

Pξ,v•,w•(X = n) =
wnξ

n

n!w(ξ)
for n = 1, 2, . . .

so that

GX(z) =
w(zξ)

w(ξ)

and K independent of Xi’s with the power series distribution

Pξ,v•,w•(K = k) =
vkw(ξ)k

k!v(w(ξ))
for k = 1, 2, . . .

so that

GK(y) =
v(yw(ξ))

v(w(ξ))
.

Let SK := X1 +X2 + · · ·+XK . Then we have

Pξ,v•,w•(SK = n) = [zn](GK ◦GX)(z) = [zn]
v(w(zξ))

v(w(ξ))
=

ξn

n!v(w(ξ))
Bn(v•,w•)

or

Bn(v•,w•) =
n!v(w(ξ))

ξn
Pξ,v•,w•(SK = n).

This gives a probabilistic interpretation of Bn(v•,w•). In general one can choose ξ so that E(SK) =
E(K)E(X) = n and use local limit theorem for Pξ,v•,w•(SK = n) to obtain good estimate for Bn(v•,w•).

6. Gibbs Partition

Suppose that (V ◦W )([n]) is the set of all (V ◦W ) composite structures built over the set [n], for some
species of combinatorial structures V and W . Let a composite structure be picked uniformly at random
from (V ◦W )([n]), and let Πn denote the random partition of [n] generated by blocks of this random
composite structure. Recall that vj and wj denote the number of V - and W - structures respectively on
a set of j objects. Then for each particular partition {A1, A2, . . . , Ak} of [n] it is clear that

P(Πn = {A1, A2, . . . , Ak}) = p(|A1|, |A2|, . . . , |Ak|; v•,w•) (2)

where for each composition (n1, n2, . . . , nk) of n we have

p(n1, n2, . . . , nk; v•,w•) =
vk
∏k
i=1 wni

Bn(v•,w•)

with the normalizing constant

Bn(v•,w•) =

n∑
k=1

vkBn,k(v•,w•)

assumed to be strictly positive. More generally, given two non-negative sequences v• := (v1, v2, . . .) and
w• := (w1, w2, . . .), call Πn a Gibbs[n](v•,w•) partition if the distribution of Πn on P[n] is given by (2).

Note that we have the following redundancy in the parameterization of Gibbs[n](v•,w•) partitions:
for arbitrary positive constants a, b and c,

Gibbs[n](ṽ•, w̃•) = Gibbs[n](v•,w•)

where ṽ• = (ab−1v1, ab
−2v2, ab

−3v3, . . .) and w̃• = (bcw1, bc
2w2, bc

3w3, . . .).
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6.1. The block sizes in exchangeable order. The following theorem provides a fundamental repre-
sentation of Gibbs partitions.

Theorem 6.1 (Kolchin’s representation of Gibbs partitions). Let (Nex
n,1, N

ex
n,2, . . . , N

ex
n,|Πn|) be the ran-

dom composition of n defined by putting the block sizes of a Gibbs[n](v•,w•) partition Πn in an ex-
changeable random order, meaning that given k blocks, the order of the blocks is randomized by a uniform
random permutation of [k]. Then

(Nex
n,1, N

ex
n,2, . . . , N

ex
n,|Πn|)

d
= (X1, X2, . . . , Xk) under Pξ,v•,w• given X1 +X2 + · · ·+XK = n

where Pξ,v•,w• governs independent and identically distributed random variables X1, X2, . . . with E(zX1) =
w(zξ)/w(ξ) and K is independent of these variables with E(yK) = v(yw(ξ))/v(w(ξ)).

Proof. Note that we have for any composition (n1, n2, . . . , nk) of n,

Pξ,v•,w•(X1 = n1, X2 = n2, . . . , Xk = nk,K = k) = Pξ,v•,w•(K = k)

k∏
i=1

Pξ,v•,w•(X = ni)

=
vkw(ξ)k

k!v(w(ξ))

k∏
i=1

wniξ
ni

ni!w(ξ)
=

vkξ
n

k!v(w(ξ))

k∏
i=1

wni
ni!

and

Pξ,v•,w•(SK = n) =
ξn

n!v(w(ξ))
Bn(v•,w•).

Thus

Pξ,v•,w•((X1, X2, . . . , XK) = (n1, n2, . . . , nk) | SK = n)

=
Pξ,v•,w•((X1, X2, . . . , XK) = (n1, n2, . . . , nk))

Pξ,v•,w•(SK = n)
=

1

Bn(v•,w•)
· vk

n!

k!

k∏
i=1

wni
ni!

.

Now Lemma 3.1 can be interpreted probabilistically to show that

P((N ex
n,1, N

ex
n,2, . . . , N

ex
n,|Πn|) = (n1, n2, . . . , nk)) =

1

Bn(v•,w•)
· vk

n!

k!

k∏
i=1

wni
ni!

for all compositions (n1, n2, . . . , nk) of n. Thus the two distributions are same. �

Note that for fixed v• and w•, the Pξ,v•,w• distribution of the random integer composition (X1, X2,
. . ., XK) depends on the parameter ξ, but the Pξ,v•,w• conditional distribution of (X1, X2, . . . , XK)
given SK = n does not. In statistical terms, with v• and w• regarded as fixed and known, the sum
SK is a sufficient statistic for ξ. Note also that for any fixed n, the distribution of Πn depends only
on the weights vj and wj for j 6 n, so the condition v(w(ξ)) < ∞ can always be arranged by setting
vj = wj = 0 for j > n.

Example 6.2 (Random partitions). Take vk = wk ≡ 1, so that v(x) = w(x) = ex − 1. Let X have
distribution

P(X = n) =
ξn

n!(eξ − 1)
, n > 1,

K have distribution

P(K = k) =
(eξ − 1)k

k!(eeξ−1 − 1)
, k > 1

and X1, X2, . . . be i.i.d. copies of X independent of K. Then the block sizes of a uniform random
partition of [n] (ordered in an exchangeable way using random ordering) has distribution

(X1, X2, . . . , XK) given X1 +X2 + · · ·+XK = n.

Note that E(X) =
∑∞
n=1 n ·

ξn

n!(eξ−1)
= ξeξ

eξ−1
= ξ

1−e−ξ , E(K) = eξ−1

1−e1−eξ
and E(SK) = E(X)E(K) =

ξeξ

1−e1−eξ
. Thus if we choose ξ = log n − log log n, we have E(SK) ≈ n, E(K) ≈ n/ log n and E(X) ≈

log n− log log n. This suggests that in a uniform random permutation we have typically n/ log n many
blocks and the average block size is log n− log log n.



ST329: Exercise sheet 1

(1) Give a combinatorial proof of the identity

k∑
i=0

(
n

i

)(
m

k − i

)
=

(
n+m

k

)
.

Hint: Consider n red balls and m white balls and count number of ways to choose k balls from them
without repetition.

(2) Give a combinatorial proof of the identity

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1)

where S(n, k) is the Stirling number of second kind.
Hint: See the notes.

(3) Give a combinatorial proof of the identity

xn =

n∑
k=0

S(n, k)(x)k

where S(n, k) is the Stirling number of second kind and (x)k = x(x − 1)(x − 2) · · · (x − k + 1) is the
falling factorial.
Hint: Use the fact that for an integer x, xn is the number of ways to arrange x distinguishable objects
into n ordered places with repetition of objects allowed.

(4) Let g1(x) = ex−1. Let gk(x), k > 1 be differentiable functions such that gk(0) = 0 and the following
holds:

g′k(x) = kgk(x) + gk−1(x)

for all x, k. Show by induction that

gk(x) =
1

k!
(ex − 1)k

for all k.
Hint: Clearly g1 is of the given form. If gk−1(x) is given by the above formula, show that gk(x) is also
given by the above formula. Use the fact that (e−kxgk(x))′ = e−kx(g′k(x)− kgk(x)).

(5) Show that the number of weak composition of n into k parts is
(
n+k−1
k−1

)
and number of composition

of n into k parts is
(
n−1
k−1

)
. Use this result to give a combinatorial proof of the identity

k∑
i=1

(
n− 1

i− 1

)(
k

i

)
=

(
n+ k − 1

k − 1

)
.

Hint: Consider the places with 0 in the weak compositions.

(6) Let Fn be the number of compositions of the integer n such that all the terms are odd.
(a) Show that F1 = 1, F2 = 1 and Fn satisfies Fn = Fn−1 + Fn−2 for all n > 3.
(b) Let f(x) =

∑
n>1 Fnx

n be the generating function of the sequence Fn, n > 1. Show that

f(x) = x+ xf(x) + x2f(x)

using the relation in (a).
(c) Show that f(x) = x

1−x−x2 . The sequence (Fn, n > 1) is known as Fibonacci sequence.



ST329: Exercise sheet 2

(1) Let (p1, p2, . . .) be a sequence of numbers such that
∑
i>1 pi = k and

∑
i>1 ipi = n. Show that the

number of partitions of the set [n] = {1, 2, . . . , n} into k blocks such that there are pi many blocks of
size i for i > 1, is

n!∏
j>1(j!)pjpj !

.

(2) Prove that

Bn,2(w•) =

{∑(n−1)/2
i=1

(
n
i

)
wiwn−i if n is odd∑n/2

i=1

(
n
i

)
wiwn−i − 1

2

(
n
n/2

)
w2
n/2 if n is even.

Hint: Done in the class.

(3) Show that the number of graphs on [n] is 2(n2).
Hint: Done in the class.

(4) Let W be the connected graph structure and let wn be the number of connected graphs on [n]. Let
V be the trivial structure with vn ≡ 1. Show that (V ◦W )([n]) is the graph structure on [n]. Moreover,
using the theory about composite structures show that

wn =
[xn
n!

]
log
(

1 +

∞∑
k=1

2(k2)x
k

k!

)
.

Hint: Done in the class.

(5) Let V be the trivial structure and let W be the cycle structure, so that (V ◦W ) composite structure is
the permutation structure. Using this connection find the distribution of the cycle lengths in a uniform
random permutation. Give a heuristic behind the statement that there are roughly log n many cycles
in a uniform random permutation, similar to Example 6.2.

(6) Let v• = (1, 1, 1, . . .) and w• = (w1, w2, . . .). Let Πn be a Gibbs[n](v•,w•) partition. Let |Πn|j be
the number of blocks of Πn of size j. Show that,

(|Πn|j)nj=1
d
=

(
(Mj)

n
j=1

∣∣∣∣∣
n∑
j=1

jMj = n

)
where the Mj are independent Poisson variables with parameters wjξ

j/j! for arbitrary ξ > 0.
Hint: Given a sequence of integers mj , j = 1, 2, . . . , n with

∑
j>1 jmj = n, show that P(|Πn|j =

mj , j = 1, 2, . . . , n) is same as P(Mj = mj , j = 1, 2, . . . , n|
∑n
j=1 jMj = n). For the first probability use

Lemma 3.3 and for the second one use Bayes’ rule for conditional probability and independence of Mj ’s.



Specimen Exam Question

(1) Combinatorial Stochastic Process.

(a) Show that the number of weak composition of n into k parts is
(
n+k−1
k−1

)
and number of compo-

sition of n into k parts is
(
n−1
k−1

)
.

[4 marks]
(b) Use the result in (a) to give a combinatorial proof of the identity

k∑
i=1

(
n− 1

i− 1

)(
k

i

)
=

(
n+ k − 1

k − 1

)
.

[2 marks]
(c) Let (p1, p2, . . .) be a sequence of numbers such that

∑
i>1 pi = k and

∑
i>1 ipi = n. Show that

the number of partitions of the set [n] = {1, 2, . . . , n} into k blocks such that there are pi many
blocks of size i for i > 1, is

n!∏
j>1(j!)pjpj !

.

[5 marks]
(d) Let v• = (v1, v2, . . .) and w• = (w1, w2, . . .). Let Πn be a Gibbs[n](v•,w•) random partition and
{A1, A2, . . . , Ak} be a fixed partition of [n]. Find the probability that Πn = {A1, A2, . . . , Ak}.

[1 mark]
(e) Assume that v• = (1, 1, 1, . . .) and w• = (w1, w2, . . .) is arbitrary. Let Πn be a Gibbs[n](v•,w•)

partition. Let |Πn|j be the number of blocks of Πn of size j. Show that,

(|Πn|j)nj=1
d
=

(
(Mj)

n
j=1

∣∣∣∣∣
n∑
j=1

jMj = n

)
where the Mj are independent Poisson variables with parameters wjξ

j/j! for arbitrary ξ > 0.
[8 marks]



Solutions to Exercise sheet 1

(1) We consider (n + m) many balls out of which n are red balls and m are white balls. Number of
ways to choose k balls (the order does not matter) from them without repetition is

(
n+m
k

)
. We can also

count this number in the following way: first fix i from {0, 1, . . . , k}, choose i red balls and (k− i) white
balls. Number of ways to choose i red balls from n balls is

(
n
i

)
and number of ways to choose (k − i)

white balls from m balls is
(
m
k−i
)
. By multiplication principle the total number for the second way of

counting is
∑k
i=0

(
n
i

)(
m
k−i
)
. Thus we have

k∑
i=0

(
n

i

)(
m

k − i

)
=

(
n+m

k

)
.

(2) See Lemma 2.2.

(3) Fix an integer x. The number of ways to arrange x distinguishable objects into n ordered places with
repetition of objects allowed is xn. We can also count the number in the following way: We name the
places by 1, 2, . . . , n. We fix an integer k from [n]; choose k ordered objects from x many distinguishable
objects without repetition and a partition of [n] into k blocks. Order the blocks according to the smallest
number in the blocks (for example for the partition {14, 5, 23} the first block is 13, second block is 23
and third block is 5). Now put the first chosen object in the places given in the first block, second
chosen object in the places given in the second block and so on. Number of ways to choose k ordered
objects from x many distinguishable objects without repetition is (x)k and number of partitions of [n]
into k blocks is S(n, k). Thus we have xn =

∑n
k=0 S(n, k)(x)k.

(4) We consider n indistinguishable balls and (k−1) indistinguishable bars. Number of ways to arrange

them in order is
(
n+k−1
k−1

)
. Each arrangement gives a weak composition of n in the following way. Let the

number of balls before the first bar be x1, number of balls between the first and second bar be x2 and so
on, number of balls after the (k−1)-th bar be xk. Clearly (x1, x2, . . . , xk) gives a weak composition of n
into k parts and any such weak composition arises in this way. Thus the number of weak compositions
of n into k parts is

(
n+k−1
k−1

)
. To count the number of composition of n into k parts, we notice that we

have to choose (k − 1) gaps out of the (n− 1) gaps between the n balls.
To prove the given identity, we count number of weak compositions of of n into k parts in a different
way. If we ignore all the zeros from the weak composition, we will get a composition of n but likely to
be with less than k parts. So we can first choose i (number of parts if we ignore all the zeroes in the
weak composition) from [k], a composition of n into i blocks and (k − i) places out of k places where
we will put the zeroes in the weak composition. For example, for n = 5, k = 3, choosing i = 2, the
composition (3, 2) of n into i parts and k−i = 1 places {2} gives the weak composition (3, 0, 2). Number
of compositions of n into i blocks is

(
n−1
i−1

)
and number ways to choose (k − i) places out of k places is(

k
k−i
)

=
(
k
i

)
. By multiplication principle and summing, we have the number of weak compositions of n

into k parts is
k∑
i=1

(
n− 1

i− 1

)(
k

i

)
.

(5) (a) Let us call a composition with all the terms being odd an “odd composition”. Consider an
odd composition of the integer n. If the composition contains 1, then after removing 1 we obtain an
odd composition of (n − 1). If the composition does not contain 1, then all the terms are bigger than
or equal to 3 and thus after subtracting 2 from the smallest term in the composition we obtain an
odd composition of (n − 2). Similarly, given an odd composition of (n − 1), by attaching 1 to the
composition we can construct an odd composition of n and given an odd composition of (n − 2), by
adding 2 to the smallest term of the composition we can construct an odd composition of n. Thus
we have Fn = Fn−1 + Fn−2. Obviously F1 = F2 = 1 as 1 = 1 and 2 = 1 + 1 each has only one odd
composition. (b) we have f(x) =

∑
n>1 Fnx

n = F1x + F2x
2 +

∑
n>3(Fn−1 + Fn−2)xn = x + x2 +

x
∑
n>3 Fn−1x

n−1 + x2
∑
n>3 Fn−2x

n−2 = x+ xf(x) + x2f(x). (c) trivial.



Solutions to Exercise sheet 2

(1) Consider the sequence (x1, x2, . . . , xk) where x1 = · · · = xp1 = 1, xp1+1 = · · · = xp1+p2 = 2,

xp1+p2+1 = · · · = xp1+p2+p3 = 3 and so on. Clearly
∑k
i=1 xi =

∑
j>1 jpj = n. By multiplication

principle, number of ways to choose an ordered sequence of blocks so that the i-th block is of size xi for
i = 1, 2, . . . , k, is(

n

x1

)(
n− x1

x2

)(
n− x1 − x2

x3

)
· · ·
(
n− x1 − x2 − · · · − xk−1

xk

)
=

n!∏
i>1 xi!

=
n!∏
j j!

pj
.

However, in the partition of [n] the ordering of the blocks does not matter, hence the pj many blocks
of size j, for j > 1 must be unordered to get unique partitions. Thus the number of ways to partition
[n] into k blocks such that the there are pj many blocks of size j for j > 1, is

n!∏
j>1 j!

pjpj !
.

(2) Done in the class.

(3) Done in the class.

(4) Done in the class.

(5) Similar to Example 6.2.

(6) First of all note that it is enough to show that P(|Πn|j = mj , j = 1, 2, . . . , n) = C · P(Mj = mj , j =
1, 2, . . . , n|

∑n
j=1 jMj = n) for all sequence of integers mj , j = 1, 2, . . . , n for some constant C that does

not depend on mj , j = 1, 2, . . . , n. Since total probability is 1, C must automatically be equal to 1.

Note that both the probabilities are zero unless we have
∑
j>1 jmj = n. Now take a sequence of

integers mj , j = 1, 2, . . . , n satisfying
∑n
j=1 jmj = n. By definition of Gibbs partition, given any

partition {A1, A2, . . . , Ak} of [n] such that mj of the Ai’s have size j for j = 1, 2, . . . , n, we have

P(Πn = {A1, A2, . . . , Ak}) =
vk
∏k
i=1 w|Ai|

Bn(v•,w•)
=

∏n
j=1 w

mj
j

Bn(v•,w•)
.

By Question (1), the number of partitions of the set [n] = {1, 2, . . . , n} into k blocks such that there are
mj many blocks of size j for j = 1, 2, . . . , n, is

n!∏n
j=1(j!)mjmj !

.

Thus we have

P(|Πn|j = mj , j = 1, 2, . . . , n) =
n!∏n

j=1(j!)mjmj !
·
∏n
j=1 w

mj
j

Bn(v•,w•)
=

n!

Bn(v•,w•)
·
n∏
j=1

w
mj
j

(j!)mjmj !
.

Now, by Bayes’ rule we have

P(Mj = mj , j = 1, 2, . . . , n|
n∑
j=1

jMj = n) =
P(Mj = mj , j = 1, 2, . . . , n,

∑n
j=1 jMj = n)

P(
∑n
j=1 jMj = n)

=
P(Mj = mj , j = 1, 2, . . . , n)

P(
∑n
j=1 jMj = n)

.
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Moreover, by independence of Mj ’s and definition of Poisson distribution we have

P(Mj = mj , j = 1, 2, . . . , n|
n∑
j=1

jMj = n) =

∏n
j=1 P(Mj = mj)

P(
∑n
j=1 jMj = n)

=
1

P(
∑n
j=1 jMj = n)

n∏
j=1

e−wjξ
j/j! (wjξ

j/j!)mj

mj !

=
ξne−

∑n
j=1 wjξ

j/j!

P(
∑n
j=1 jMj = n)

n∏
j=1

w
mj
j

(j!)mjmj !

In particular, we have

P(|Πn|j = mj , j = 1, 2, . . . , n) = C · P(Mj = mj , j = 1, 2, . . . , n|
n∑
j=1

jMj = n)

for all sequence of integers mj , j = 1, 2, . . . , n with C = n!
Bn(v•,w•) ·

P(
∑n
j=1 jMj=n)

ξne
−

∑n
j=1

wjξ
j/j!

. This completes the

proof.

As a byproduct we obtain that,

P(

n∑
j=1

jMj = n) =
Bn(v•,w•)

n!
ξne−

∑n
j=1 wjξ

j/j!.
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